
Improving Shadows and Reflections via the Stencil Buffer

Mark J. Kilgard *

NVIDIA Corporation

 “Slap textures on polygons, throw them at the screen, and let the depth buffer sort it out.”

For too many game developers, the above statement sums up their approach to 3D hardware-
acceleration. A game programmer might turn on some fog and maybe throw in some
transparency, but that’s often the limit. The question is whether that is enough anymore for a
game to stand out visually from the crowd. Now everybody’s using 3D hardware-acceleration,
and everybody’s slinging textured polygons around, and, frankly, as a result, most 3D games
look more or less the same.

Sure there are differences in game play, network interaction, artwork, sound track, etc., etc.,
but we all know that the “big differentiator” for computer gaming, today and tomorrow, is the
look. The problem is that with everyone resorting to hardware rendering, most games look
fairly consistent, too consistent. You know exactly the textured polygon look that I’m talking
about.

Instead of settling for 3D hardware doing nothing more than slinging textured polygons, I argue
that cutting-edge game developers must embrace new hardware functionality to achieve visual
effects beyond what everybody gets today from your basic textured and depth-buffered
polygons.

Two effects that can definitely set games apart from the crowd are better quality shadows and
reflections. While some games today incorporate shadows and reflections to a limited extent,
the common techniques are fairly crude. Reflections in today’s games are mostly limited to
“infinite extent” ground planes or ground planes bounded by walls. As far as such reflections
go, don’t expect to see reflections on isolated surfaces such as a reflective tabletop or
reflective stair steps. Shadows have worse limitations. Shadows in today’s games are often
not much more than dark spots projected on the floor. As far as shadows go, don’t expect the
shadow to be properly combined with the ground texture, don’t expect to see shadows cast
onto arbitrarily shaped objects, and don’t expect to see shadows from multiple light sources.

What this tutorial describes is a set of techniques for improving the quality of shadows and
reflections using the per-pixel stencil testing functionality supported by both OpenGL and

* Mark graduated with B.A. in Computer Science from Rice University and is a System
Software Engineer at NVIDIA. Mark is the author of OpenGL Programming for the X Window
System (Addison-Wesley, ISBN 0-201-48359-9) and can be reached by electronic mail
addressed to mjk@nvidia.com

NVIDIA Corporation Advanced OpenGL Development

2

Direct3D. From its inception, OpenGL required stenciling support. Direct3D incorporated
stenciling more recently in its DirectX 6 update.

Using texturing, fog, or depth buffering is pretty straightforward. However, if you just read the
available documentation on stenciling, you’ll probably be left scratching your head and
wondering what in the world to do with it. Hence, this tutorial.

Stenciling is an extra per-pixel test and set of update operations that are closely coupled with
the depth test. In addition to the color and depth bit-planes for each pixel, stenciling adds
additional bit-planes to track the stencil value of each pixel. The word “stenciling” often gives
those unfamiliar with per-pixel stenciling a pretty limited impression of the functionality’s
potential. Yes, you can use the stencil buffer simply to reject fragments outside some
stenciled 2D region of a window (the way a stencil is used when painting letters onto a surface
in the real world). However the actual stencil testing functionality is quite a bit more powerful
than implied by the common usage of the word.

A better way to think of per-pixel stenciling is that stenciling is a means to “tag” pixels in one
rendering pass to control their update in subsequent rendering passes. Consider how that can
be applied to shadows. Given a scene with a hard shadow, pixels making up the scene can be
considered either “inside” or “outside” of the shadow. Assume that we can tag each pixel in
the scene appropriately. Once the pixels are tagged, then configure stenciling to only update
the pixels tagged “inside the shadow” and re-render the scene with the blocked light source
disabled. Then re-configure stenciling to update only pixels tagged “outside the shadow,”
enable the light source, and re-render the scene again. This simple description leaves several
issues unexplained. For example, how do you go about “tagging” pixels as being inside or
outside of a shadow? This issue and all the rest will be addressed in subsequent sections.
Keep in mind the approach described above is just one way to use the “tagging” power of per-
pixel stenciling.

Silicon Graphics introduced per-pixel stencil testing hardware over a decade ago with its VGX
high-end graphics workstation.1 Since that time, the price of stencil hardware has dropped by
well over three orders of magnitude (Moore’s law in action!) and is soon to become a
ubiquitous feature of PC gaming systems. The Permedia II from 3Dlabs was the first mass-
market 3D chip to support hardware stencil. As of last year, the RIVA TNT from NVIDIA was
the first mass-market 3D chip to support a full 8-bit stencil buffer. The installed base of RIVA
TNT systems is over 4 million and growing. More recently announced chips such as the Rage

OpenGL implementation Stencil bits supported
Most software implementations
 (Mesa, MS OpenGL, SGI OpenGL)

8

3Dlabs Permedia II 1
SGI Indigo2 Extreme 4
SGI Octane MXI 8
ATI RAGE 128 8 (32-bit mode only)
NVIDIA RIVA TNT 8 (32-bit mode only)
SGI Onyx2 InfiniteReality 1 or 8 (multisampled)

Table 1. Stencil bits supported by selected OpenGL implementations.

NVIDIA Corporation Advanced OpenGL Development

3

128 from ATI also support a full 8-bit stencil buffer. With both major 3D APIs fully supporting
hardware stenciling and the major 3D chip companies designing in hardware stencil support,
you can expect stencil hardware to become nearly ubiquitous for new 3D hardware by
Christmas 1999.

This tutorial will explain what per-pixel stencil testing is and how to use it. Section 1 overviews
the per-pixel stenciling testing functionality from the programmer’s point of view. Section 2
explains the basic non-stenciled approach to rendering reflections, while Section 3 shows how
to improve reflection effects with stenciling. Section 4 explains the basic non-stenciled
approach for rendering planar projected shadows, while Section 5 show how stenciling can
improve such shadows. Section 6 explains a more powerful stencil-based shadow volume
algorithm permitting volumetric shadow regions instead of simple projections of shadows onto
planes. Section 7 provides a brief synopsis of several more applications for stenciling.
Section 8 concludes.

1. Per-pixel Stencil Testing
Explaining how stencil testing works is a little like explaining a Swiss Army knife. The basic
stencil testing functionality sounds pretty mechanical, but it is difficult to appreciate and use
stencil testing for shadows and reflections until you understand its basic functionality. Please
bear with me for the remainder of this section. To keep things simple, the subsequent
examples of programming the stencil rendering state use OpenGL commands (rest assured
that Direct3D provides the identical stenciling functionality just with a considerably more
complex and cumbersome API).

Stencil testing assumes the existence of a stencil buffer so any explanation of how stencil
testing works is predicated on understanding what the stencil buffer is. The stencil buffer is
similar to the depth buffer in that the stencil buffer is a set of non-displayable bit-planes in
addition to the color buffers. In the same way a depth buffer associates a depth value with
every pixel for a window supporting a depth buffer, a stencil buffer associates a stencil value
with every pixel for a window supporting a stencil buffer. And just as when depth testing is

Pixel
Ownership

Test

Stencil
Test

Depth
Test

Blending

Dithering

Logic Op

Scissor
Test

Alpha
Test

Framebuffer

Fragment
+

Associated
Data

Figure 1. Per-fragment operation sequence.

NVIDIA Corporation Advanced OpenGL Development

4

enabled, the depth values are used to accept or reject rasterized fragments, when the stencil
test is enabled, the frame buffer’s stencil values are used to accept or reject rasterized
fragments.

The first step to using stenciling is requesting a window that supports a stencil buffer.
Typically, you specify the minimum number of bits of stencil you require because an
implementation may be limited in the number of stencil bits it supports. In Win32 OpenGL
programs, this means using ChoosePixelFormat or DescribePixelFormat to find a pixel
format supporting a stencil buffer. OpenGL Utility Toolkit2 (GLUT) users have it easy.* Here is
an example of how to create a double buffered window supporting both stencil and depth
buffers in GLUT:

glutInitDisplayString("stencil>=1 rgb depth double");
glutCreateWindow("stencil buffer example");

Nearly all software implementations of stencil support 8-bit stencil buffers. Hardware
implementations vary in the number of bits of stencil they support, but one, four, or eight bits
are the common configurations as shown in Table 1. Compliant OpenGL implementations are
required to support at least one bit of stencil, even if the implementation is forced to resort to
software rendering to support stenciling. Though functionally identical, hardware stenciling is
typically at least an order of magnitude faster than software stenciling. Interactive stencil
applications typically require hardware support for adequate performance, but fortunately,
hardware stencil buffers are becoming standard-issue with new graphics hardware designs,
even in the consumer PC space.

In particular, I expect that the 8-bit stencil buffer configuration will become a standard 3D
accelerator feature. The reason has to do with the size of 32-bit memory words as much as
anything else. In previous years, memory capacities, memory cost, and bandwidth limitations
meant that PC graphics subsystems settled for 16-bit color buffers and 16-bit depth buffers.
Unfortunately, this compromise dictates limited color and depth precision that undermines
overall scene quality. Still this compromise allows two pixels to fit compactly into two 32-bit
words. Cheaper and denser memories and smarter designs now permit current and future
generations of PC graphics subsystem to support deeper frame buffers that support two 32-bit
words per pixel. Such a “3D true color” frame buffer stores 8 bits of red, green, blue, and
alpha in one of the pixel words. More importantly though, while 16-bit depth buffers often lack
sufficient depth precision, 32-bit depth buffers end up with far more precision than applications
typically ever require. So instead of a 32-bit depth buffer, 8 bits of the word are better utilized
as stencil buffer, leaving a 24-bit depth buffer with still generous depth buffer resolution.

* The OpenGL Utility Toolkit (GLUT) is a freely available library for writing portable OpenGL examples and demos.
GLUT supports both the X Window System (for Linux and Unix workstation users) and Win32 (for those addicted
to Microsoft's tyranny). You can download GLUT from the Internet from
http://reality.sgi.com/opengl/glut3/glut3.html

NVIDIA Corporation Advanced OpenGL Development

5

The stencil value itself is an unsigned integer, and as will be described later, increment,
decrement, comparison, and bit-masking operations can be performed on the integer values
held in the stencil buffer. This is in contrast to depth values that are typically thought of as
fixed-point values ranging from zero to one. Also, the only operation typically performed on a
depth buffer value is a comparison with another depth value; unlike stencil values, depth
values are not masked, incremented, or decremented.

Typically at the beginning of rendering a scene, the stencil buffer is cleared to particular
program-specified value. In OpenGL, setting the stencil buffer clear value and clearing the
color, depth, and stencil buffers is done like this:

glClearStencil(0); // clear to zero
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT |
 GL_STENCIL_BUFFER_BIT);

Again like the depth test, the stencil test can either be enabled or disabled, and the result of
the test determines if the rasterized fragment is discarded or is further processed. When
enabled, the stencil test is performed for each and every rasterized fragment so the stencil test
is referred to as per-fragment (or per-pixel depending on your point of view). When the stencil
test is enabled and the test fails, the rasterized fragment is discarded. Otherwise, either
because the stencil test passes or because stencil testing is disabled, the fragment continues
to be processed. In OpenGL, enabling and disabling the stencil buffer is done like this:

glEnable(GL_STENCIL_TEST);
glDisable(GL_STENCIL_TEST);

You can think of the stencil test as a hurdle just like the depth test, alpha test, or scissor test
that fragments must overcome before getting the opportunity to update the frame buffer. The
stencil test is performed after the alpha test and before the depth test as shown in Figure 1.
While the ordering of these operations may seem a bit arbitrary, the precise ordering of these
per-fragment operations is crucial for the algorithms described later.

The depth test, alpha test, and stencil test each perform a comparison. The depth test
compares the fragment’s depth value to the pixel’s depth buffer value. The alpha test
compares the fragment’s alpha value to an alpha reference value. Note that the alpha
reference value is not fetched from any per-pixel buffer, but rather is a piece of rendering
engine state. The stencil test compares the pixel’s stencil buffer value to a stencil reference
value that, like the alpha test reference value, is a piece of rendering engine state.
Fortunately, these three per-fragment tests share the same set of eight comparison functions:
never, always, less than, less than or equal, greater than, greater than or equal, equal,
and not equal.

The stencil comparison is actually a bit more powerful than a straight comparison because
before the comparison is made, both the stencil buffer value and the reference value are bit-
wise ANDed with a stencil comparison bit-mask. This means the comparison can be limited to
specific bits allowing the stencil bit-planes can be treated as a whole, individually, or as a

NVIDIA Corporation Advanced OpenGL Development

6

subset. In OpenGL, the stencil comparison function, the stencil reference value, and the
stencil comparison bit-mask are set as follows:

glStencilFunc(GL_EQUAL, // comparison function
 0x1, // reference value
 0xff); // comparison mask

When the alpha or scissor test fails, the fragment is simply rejected. When the alpha or
scissor test passes, processing of the fragment continues. In neither case are there any side
effects. The depth test is a bit more involved. If the depth test fails, the fragment is rejected
without any side effect. However, when the depth test passes, the pixel’s depth value is
replaced with the incoming fragment’s depth value, assuming that the depth buffer write mask
permits updates. The stencil test is more complicated. The stencil test has three distinct side
effects depending on whether: (1) the stencil test fails, (2) the stencil test passes but the depth
test fails, or (3) the stencil test passes and the depth test passes (or the depth test is not
enabled).

Not only are there three different per-fragment side effects, but the programmer can specify
the operation of each of the three side effects. There are six standard stencil operations:
keep, which leaves the pixel’s stencil value unchanged; replace, which replaces the pixel’s
stencil value with the current reference stencil value; zero, which clears the pixel’s stencil
value; increment, which adds one to the pixel’s stencil value and clamps the result to the
stencil buffer’s maximum value; decrement, which subtracts one from the pixel’s stencil value
and clamps the result to zero; and finally invert, which inverts the bits of the pixel’s stencil
value. † When a pixel’s updated stencil value is written back to the stencil buffer, the stencil
write bit-mask is applied so that only bits set in the stencil mask are modified. In OpenGL, the
stencil operations and the stencil write mask are set as shown in this example:

glStencilOp(GL_KEEP, // stencil fail
 GL_DECR, // stencil pass, depth fail
 GL_INCR); // stencil pass, depth pass
glStencilMask(0xff);

One warning about the stencil write mask: In OpenGL, when you clear the stencil buffer, the
stencil write mask is applied during the clearing of the stencil buffer. This is useful if you want
to preserve values in the stencil bit-planes across clears, but it can also cause confusion if you
expect the clear operation to set every pixel’s stencil value to the stencil clear value. If you

† Actually, Direct3D added two additional (and rather dubious) stencil operations: increment wrap, which adds
one to the pixel’s stencil value and wraps to zero when the stencil buffer’s maximum value is incremented, and
decrement wrap, which subtracts one from the pixel’s stencil value and wraps to the stencil buffer’s maximum
value when zero is decremented. The same functionality exists as an OpenGL extension proposed by Intergraph
and NVIDIA called EXT_stencil_wrap that adds two new enumerants: GL_INCR_WRAP_EXT (0x8507) and
GL_DECR_WRAP_EXT (0x8508). Both Mesa 2.1 and the Release 2 RIVA TNT OpenGL drivers support the
EXT_stencil_wrap extension.

NVIDIA Corporation Advanced OpenGL Development

7

want to clear all the stencil bit-planes, make sure to call glStencilMask(~0) before calling
glClear.

The OpenGL state is for stencil testing is summarized in Table 2.

For completeness, OpenGL also supports reading, writing, and copying the stencil buffer
contents with the glReadPixels, glDrawPixels, and glCopyPixels calls. If the format
parameter to these calls is GL_STENCIL, they operate on the stencil buffer values. Also, keep
in mind that in OpenGL, the stencil test (like all the per-fragment operations) applies to all
fragments whether they are generated by geometric primitives (points, line, and polygons) or
image primitives (bitmaps and images).

2. Review of Planar Reflections without Stencil

In the creative imagination of Lewis Carroll, a looking glass can open up a gateway to a make-
believe land that defies traditional logic. In the real world however, mirrors are not so
mysterious. Essentially, a mirror flips the image of reality through its plane.

That actually turns out to be pretty good intuition for how to interactively render a planar
reflection.3 In practice, this amounts to a pretty straightforward algorithm that is easily
expressed in OpenGL:

1. Load the modelview matrix with the view transform. For example, given the eye location,
the center of viewing, and up direction vector, the view transform can be set as follows:

glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
gluLookAt(eye[0], eye[1], eye[2],
 center[0], center[1], center[2],
 up[0], up[1], up[2]);

2. Push the modelview matrix:

glPushMatrix();

State Description Initial value
State update
command

State query
token

Stenciling enable GL_FALSE glEnable
glDisable

GL_STENCIL_TEST

Stencil function GL_ALWAYS glStencilFunc GL_STENCIL_FUNC
Stencil compare mask All 1’s glStencilFunc GL_STENCIL_VALUE_MASK
Stencil reference value 0 glStencilFunc GL_STENCIL_REF
Stencil fail operation GL_KEEP glStencilOp GL_STENCIL_FAIL
Stencil depth fail operation GL_KEEP glStencilOp GL_STENCIL_PASS_DEPTH_FAIL
Stencil depth pass operation GL_KEEP glStencilOp GL_STENCIL_PASS_DEPTH_PASS
Stencil write mask All 1’s glStencilMask GL_STENCIL_WRITEMASK

Table 2. OpenGL stencil state with initial values, update commands, and get tokens.

NVIDIA Corporation Advanced OpenGL Development

8

3. Multiply the current modelview matrix by a reflection matrix that reflects the scene through
the plane of the mirror. Consider the special case where the mirror happens to lie in the
z=0 plane. This special case reflection is a simple scaling matrix that negates the Z
coordinate:

glScalef(1.0, 1.0, -1.0);

For an arbitrary plane, a 4 by 4 matrix can be constructed to reflect through an arbitrary
plane as detailed in Appendix A.

4. If using back face culling, cull front faces instead. The reflective transformation flips the
front/back orientation of transformed polygons.

glCullFace(GL_FRONT);

5. Draw the scene, but be careful to render only objects on the reflective side of the mirror
plane. Otherwise, objects behind the mirror that should properly be obscured by the mirror
will be rendered as if they are actually in front of the mirror plane. This issue will be
discussed in more detail later.

6. Resume normal back face culling and undo the reflection matrix.

glCullFace(GL_BACK);
glPopMatrix();

7. Optionally, to give the appearance of a semi-reflective surface such as polished marble, or
simply a dull or dirty mirror, a textured planar surface coincident with the mirror plane can
be blended on top of the reflection rendered in Step 5. For example:

glEnable(GL_BLEND);
glBlendFunc(GL_ONE, GL_ONE); // additive blending
renderMarbleTexturedMirrorSurfacePolygons();
glDisable(GL_BLEND);

Even if the mirror surface is not blended with a semi-reflective surface, it is important to
render the mirror surface polygons into the depth buffer to ensure that when the scene is
rendered again in the next step that objects properly are occluded by the mirrors. For
example:

glColorMask(0,0,0,0); // disable color buffer updates
renderMirrorSurfacePolygons(); // update depth buffer with the mirror surface
glColorMask(1,1,1,1); // re-enable color buffer updates

8. Finally, now render the unreflected scene.

This type of rendering algorithm is often referred to as multi-pass because the sequence of
operations involves rendering the scene or portions of the scene multiple times. Notice that
steps 5 and 8 each render the scene but with different modelview transformations.

NVIDIA Corporation Advanced OpenGL Development

9

While the above approach does work, but it has several limitations. The first limitation is that
there must be no way to “look behind” the plane of the mirror. One way to accomplish this is to
assume an “infinite” planar reflective surface where there is just no way to look around the
mirror since the mirror is infinite. More typically, when the above-described technique is used,
well placed walls, floors, and ceilings are used to occlude any visibility beyond the mirror
plane. For the technique to work, the reflection must be a constrained reflection as shown in
Figure 2 so that it is simply not possible to “look behind” the mirror plane.

While 3D games can often accommodate these restrictions by limiting where mirrors can be
placed, simple room configurations such as an open doorway and a mirror on the same wall
break the assumption.

Also consider what happens when multiple mirrors appear in the same scene. Note that when
two or more mirrors are present in the same scene, you probably want to be careful to avoid
situations that can create infinite recursive reflections. For example, two parallel mirrors facing
each other such as in a barbershop. Note that a multi-pass reflection algorithm does not “go
into an infinite loop” in such a situation. The best such an implementation can do is to render
some finite number of nested reflections and thereby only poorly approximate the true reality of
infinitely recursive reflections.

But infinite reflections are not always present. Consider a two-tiered reflective marble floor.
Because the two floor surface planes have the identical planar orientation, the two sections of
floor can not reflect each other, but each tier has its own noticeably distinct reflection. The
problem is that the above technique is really only designed to render a single reflection. Other
configurations of multiple mirrors such as a periscope also do not create infinite recursive
reflections. Imagine a hallway with two mirrors at each end at 45° angles so you can peer

- Constrained reflection: Mirror bounded
by walls so no way exists for the eye to
“look behind” the wall to see the ribbon,
though box “in front” of the mirror also
appears reflected by the mirror.

Unconstrained reflection: Free-standing
non-infinite mirror presents the opportunity
to “look behind” the mirror plane to see
some of the ribbon, though the mirror also
partially occludes a portion of the ribbon.

 Figure 2. Distinguishing between constrained and unconstrained planar reflections.

NVIDIA Corporation Advanced OpenGL Development

10

down the hallway, but without the risk of being shot since there is no direct line of sight
(assuming no laser weapons!).

Even in the case of infinitely recursive reflections, some finite number of bounces can be
rendered before giving up. Often, it only takes several bounces to create the hall-of-mirrors
ambiance. The point is that more interesting scenarios are possible when a reflection
algorithm can handle multiple unconstrained planar reflective surfaces.

3. Improving Planar Reflections with Stencil

With stenciling, the basic algorithm from the previous section can be enhanced to handle
multiple unconstrained planar reflective surfaces. The crucial innovation is using the stencil
buffer to “tag” each mirror surface with a unique identifier. Then, when a particular reflection is
rendered, the enhanced algorithm only updates pixels matching the tag of the particular
reflective surface.

The left image in Figure 3 demonstrates the benefit of stencil testing to limit the reflection to
just the mirror surface upon which the reflection should be visible. The center and right images
demonstrate the artifacts that can occur when not using stenciling.

The enhanced reflection algorithm is very similar to the algorithm described in Section 2, but
with these modifications:

• The window should be allocated with a stencil buffer. When clearing the frame buffer at the
beginning of the scene, also clear the stencil buffer to zero.

• For each mirror in the scene, the application must maintain a per-mirror data structure that
contains the non-overlapping and co-planar polygons that compose the mirror surface. For

Figure 3. The left image shows the proper use of stenciling to limit the reflection to the
reflective surface. The middle and right images do not perform any stenciling. Notice
how in the middle image the head peeks beyond the surface. The right image
demonstrates that the reflection really is just the object flipped through the mirror plane.

NVIDIA Corporation Advanced OpenGL Development

11

a standard rectangular mirror, the world space coordinates of four vertices are sufficient.
From the vertices of any mirror polygon, the plane equation for the mirror plane can be
derived. In the code fragments below, the variable thisMirror is assumed to point to the
data structure maintaining the current mirror’s polygon set and plane equation.

• Clear the color, depth, and stencil buffers. Then render the scene, excluding the mirror
surfaces, with depth buffering but without stencil testing.

glClearStencil(0);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT |
 GL_STENCIL_BUFER_BIT);
glEnable(GL_DEPTH_BUFFER_BIT);
glDisable(GL_STENCIL_TEST);
drawScene(); // draw everything except mirrors

• Then for each mirror, perform the following sequence:

1. Set up stenciling to write the value 1 into the stencil buffer when the depth test passes.
Also disable writes to the color buffer. Then draw the mirror’s polygons.

glEnable(GL_STENCIL_TEST);
glStencilOp(GL_KEEP, GL_KEEP, GL_REPLACE);
glStencilFunc(GL_ALWAYS, 1, ~0);
glColorMask(0,0,0,0);
renderMirrorSurfacePolygons(thisMirror);

This step “tags” all the mirror’s visible pixels with a stencil value 1. Depth testing
prevents occluded mirror pixels from being tagged.

2. With the color buffer writes still disabled, set the depth range to write the farthest value
possible for all updated pixels and set the depth test to always pass. Also, set the
stencil test to only update pixels tagged with the stencil value 1. Then draw the mirror’s
polygons.

glDepthRange(1,1); // always
glDepthFunc(GL_ALWAYS); // write the farthest depth value
glStencilFunc(GL_EQUAL, 1, ~0); // match mirror’s visible pixels
glStencilOp(GL_KEEP, GL_KEEP, GL_KEEP); // do not change stencil values
renderMirrorSurfacePolygons(thisMirror);

This step resets the depth buffer to its cleared maximum value for all the mirror’s visible
pixels.

3. Restore the depth test, color mask, and depth range to their standard settings:

glDepthFunc(GL_LESS);
glColorMask(1,1,1,1);
glDepthRange(0,1);

We are now ready to render the reflection itself. The pixels belonging to the reflection

NVIDIA Corporation Advanced OpenGL Development

12

are still tagged with the stencil value 1, and these same pixels also have their depth
values cleared to the farthest depth value. The stencil test remains enabled and only
updating pixels with the stencil value 1, i.e. those pixels on the visible mirror. And the
less than depth test will ensure subsequent rendering to the mirror pixels will determine
visible surfaces appropriately.

4. Rendering the reflection requires reflecting the scene through the mirror plane, but we
must also be careful to only render objects on the reflective side of the mirror.
Therefore, we establish a user-defined clip plane to render only objects on the reflective
side of the mirror plane. The reflection itself is accomplished by concatenating the
appropriate reflection matrix to the modelview matrix so that everything is reflected
through the mirror plane. Because the reflection flips the sense of back and front facing
polygons, the cull face state is reversed. Then the scene is rendered.

GLfloat matrix[4][4];
GLdouble clipPlane[4];

glPushMatrix();
 // returns world-space plane equation for mirror plane to use as clip plane
 computeMirrorClipPlane(thisMirror, &clipPlane[0]);
 // set clip plane equation
 glClipPlane(GL_CLIP_PLANE0, &clipPlane);
 // returns mirrorMatrix (see Appendix A) for given mirror
 computeReflectionMatrixForMirror(thisMirror, &matrix[0][0]);
 // concatenate reflection transform into modelview matrix
 glMultMatrixf(&matrix[0][0]);
 glCullFace(GL_FRONT);
 drawScene(); // draw everything except mirrors
 drawOtherMirrorsAsGraySurfaces(thisMirror); // draw other mirrors as
 // neutral “gray” surfaces
 glCullFace(GL_BACK);
 glDisable(GL_CLIP_PLANE0);
glPopMatrix();

Now the mirror’s reflection is rendered correctly. Other mirrors visible in the reflection of
this mirror are rendered gray so at least they properly occlude objects behind them even
if they do not reflect objects correctly. Immediately following, we sketch a recursive
algorithm that handles reflections of reflections.

5. Finally, we reset to zero the stencil value of all the mirror’s pixels so the pixels are not
confused with another mirror’s pixels while rendering the reflections of subsequent
mirrors. Also update the depth buffer to reflect the mirror’s proper depth so this mirror
may properly occlude any subsequent mirrors. Do not update the color buffer during
this step.

glColorMask(0,0,0,0);
glStencilOp(GL_KEEP, GL_KEEP, GL_ZERO);
glDepthFunc(GL_ALWAYS);
renderMirrorSurfacePolygons(thisMirror);
glDepthFunc(GL_LESS);
glColorMask(1,1,1,1);

NVIDIA Corporation Advanced OpenGL Development

13

Or instead of not updating the color buffer, as discussed earlier, update the color buffer
by blending the reflection in the frame buffer with a surface texture to simulate a semi-
reflective surface such as polished marble.

The above algorithm cleanly handles multiple mirrors, though not reflections of reflections. But
the algorithm can be further extended to handle such reflections of reflections by making the
algorithm support a finite level of recursion. The algorithm presented above simply iterates
through each mirror and tags the pixels visible on the given mirror, then renders the mirror’s
reflected view to the appropriately tagged pixels. Only two stencil values (0 and 1) are used in
this process.

A recursive algorithm takes advantage of the increment and decrement stencil operations to
track the depth of reflection using a depth-first rendering approach. Diefenbach4,5 describes
such a recursive reflection algorithm in detail. Figure 4 shows the sort of hall-of-mirrors effect
that is possible by recursively applying stenciled planar reflections.‡ To help you better
understand what is actually being rendered, Figure 5 shows the total geometry rendered from
a bird’s eye view without any stenciling.

One issue to consider when implementing recursive reflections, and can even be an issue with
a single reflection, is that reflections, particularly deep recursive reflections, tend to require a
far clipping plane that is much further away than what is ordinarily required.

‡ The source code for multimirror.c is available in the progs/advanced97 directory of the GLUT 3.7 source
code distribution. David Blythe wrote the example.

Figure 4. Multiple recursive reflections in a room with two parallel mirrors.

NVIDIA Corporation Advanced OpenGL Development

14

Assuming every mirror can reflect every other mirror (the worst case would be a circle of
mirrors all facing each other), the maximum number of scene rendering passes required to
render n mirrors and r reflection bounces is:

∑
=

−−+
r

i

inn
1

1)1(1

For 3 mirrors and 2 bounces in the worst case, 10 renderings of the scene are required.
Consider however that a scene with 5 mirrors and 4 bounces in the worst case requires 426
renderings of the scene. The problem with recursive planar reflections is that the number of
rendering passes to render the scenes with lots of mirrors and bounces quickly become
prohibitive for interactive use. Even for a small number of mirrors or bounces, it is worthwhile
to explore more efficient culling strategies when re-rendering the scene for each reflection.
The naïve approach of re-rendering the entire scene for each reflection is a source of extreme
inefficiency. By tracking the geometry of each mirror and each bounced reflection, an
application can determine a conservative reflection frustum to help bound what objects must
be rendered in each reflected rendering pass. In addition to culling objects against such a
reflection frustum for each re-rendering, recursive reflections can be limited to mirrors within
each reflection frustum.

At this point, it is worth mentioning another approach to planar reflections that uses texture
mapping.6 This alternative renders each reflection through the reflected viewpoint and copies
the image to a texture and then textures the mirror surface appropriately. This approach does
not require stenciling. Quake 3 is expected to use the textured approach.

Using stenciling or texturing for reflections are two alternatives with different tradeoffs.
Obviously, the stenciled approach requires a stencil buffer which is less commonly supported
than hardware texturing today. The texturing approach though requires the copying of frame

Figure 5. Bird’s eye view of the multimirror scene with reflected re-renderings
but without using stenciling. The middle darker floor indicates the actual room.

NVIDIA Corporation Advanced OpenGL Development

15

buffer results into texture memory which is generally fairly expensive. Also if the reflection
texture resolution does not reasonably match the resolution of the reflection in screen space,
texture-sampling artifacts can result. In the stenciling approach however the entire reflection
computation takes place in the frame buffer so there is no pixel copying and sampling artifacts
are not an issue. Because a reflection texture can be warped when rendering the mirror
surface, the texturing approach may be adaptable to rendering reflections on curved surfaces.
This adaptability is not a unique advantage because Ofek and Rappoport7 have implemented a
successful stencil-based algorithm for interactive reflections on curved surfaces. In the
textured approach, because reflections are copied to textures, the reflection images can be
reused across multiple frames. One reason to do this is to amortize the overhead of copying
the reflected image into a texture. However reusing reflection textures introduces both
incorrect reflections if the view changes and temporal lags in the reflections.

Either approach for rendering reflections involves the awkward issue of lighting. Typically,
lighting calculations for interactive graphics use a simple local lighting model. In a local lighting
model, the lit appearance of a surface involves only the parameters of the surface (such as the
surface normal, position, material, and texture) and the parameters of a small number of point
and global light sources. In the real world, light interacts with everything so the local lighting
model assumption is only a very simplified approximation. Mirrors reflecting light and objects
casting shadows are two important effects ignored by a local lighting model. Computer
graphics researchers refer to algorithms that attempt to model how light interacts with the
totality of a scene as global illumination techniques. While global illumination techniques such
as ray tracing support a broader set of light interactions including reflections and shadows,
such techniques in general are far too slow for use in interactive applications.

It is fair to refer to the reflection techniques discussed in this section and the shadow
techniques presented in subsequent sections as pseudo-global illumination techniques. True
global illumination techniques really model the lighting interactions creating shadows and
reflections, but the techniques in this tutorial are arguably more based on clever application of
3D geometry principles and per-pixel control of pixel update than any authentic attempt to
model the true behavior of light. The strength of the pseudo-global illumination techniques
described in this tutorial is that existing 3D graphics hardware directly accelerates them.

Inspecting Figure 5 again will help you see the sort of problems this approach creates. Notice
that the sphere and cone appear to be illuminated less on their front left side. As can be
inferred from the shading, OpenGL’s standard local lighting model is applied using a light
source in the upper right corner towards the back of the room. And this lighting effect is
repeated in every reflection. But with mirrors on two walls and a light source in the room, is it
physically plausible that the sphere and circle would be illuminated from only one direction?
Indeed one of the reasons barbershops put mirrors on both walls is to increase the overall
ambient light so that the barbers have plenty of light to see what they are cutting. It probably
cuts down on the incidence of lacerated ears.

One solution is to reflect light sources through mirrors as well as objects. This introduces
additional virtual light sources in order to model how the mirror reflects the light. Adding virtual
light sources can help many situations, particularly when there are only one or two mirrors, but

NVIDIA Corporation Advanced OpenGL Development

16

because this adds more light to the scene, it can easily leads to overly bright scenes (energy is
not conserved). Adjusting the light source parameters such as attenuation can help balance
the lighting, but this is not a complete substitute for true global illumination. The easiest and
cheapest solution is to simply add more global ambient light to the scene to account for the
additional reflected light. In the presence of shadows, reasonable handling of lighting gets
even more complicated. Diefenbach has presented an extensive treatment of many of these
lighting issues.5

4. Review of Planar Projected Shadows without Stencil

Shadows are created wherever light is blocked. And this occurs all the time. Indeed shadows,
more so than reflections, are vitally important to our appreciation and understanding of the 3D
nature of the world. Unfortunately, the local lighting models supported by OpenGL, Direct3D,
and other interactive graphics interfaces do not support shadows except to the very limited
extent that surfaces facing away from a particular light source get no diffuse or specular
contribution from the light. This self-shadowing effect is due only to the orientation of the
surface with respect to the light and not any blocking of illumination by a shadowing object.

The planar projected shadow algorithm is a well-known, easy-to-implement graphics trick for
casting the shadows of arbitrary objects onto planes.8 The technique and its mathematical
basis are described by Blinn in a classic column titled “Me and My (Fake) Shadow.”9

Given the plane equation for a ground plane and the homogenous position of the light, a 4 by 4
matrix called the planar projected shadow matrix can be constructed that projects 3D polygons
onto the specified ground plane based on the light source position. If you transform a
polygonal object by the planar projected shadow matrix, all its polygons are piled on the
ground plane much like a shadow. Thinking of the shadow as a pile of projected polygons will
give you the right intuition, but keep in mind the resulting polygons are co-planar so the pile
has no height.

The trick is to construct the matrix then concatenate the matrix with the modelview matrix.
Then the shadow is rasterized into the ground plane by simply re-rendering the object. In
many ways, this is analogous to what we did with the reflection matrix in the previous two
sections except we project instead of reflect. This algorithm is easily expressed in OpenGL:

1. Load the modelview matrix with the view transform. For example, given the eye location,
the center of viewing, and up direction vector, the view transform can be set as follows:

glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
gluLookAt(eye[0], eye[1], eye[2],
 center[0], center[1], center[2],
 up[0], up[1], up[2]);

2. Given a light position and plane equation for the ground plane, and assuming the object is
between the plane in the light (otherwise there would be no shadow cast on the plane),

NVIDIA Corporation Advanced OpenGL Development

17

enable the light source, and draw the object and the ground plane with depth buffering:

// local light location (LX,LY,LZ)
GLfloat lightPosition[4] = { LX, LY, LZ, 1.0 };
// A*x + B*y + C*z + D = 0
Glfloat groundPlaneEquation[4] = { A, B, C, D };

glLightfv(GL_LIGHT0, GL_POSITION, lightPosition);
glEnable(GL_LIGHT0);
glEnable(GL_LIGHTING);
drawObject();
drawGroundPlane();

3. Push the modelview matrix:

glPushMatrix();

4. Given the light source position and ground plane equation, construct a shadow matrix with
the shadowMatrix routine detailed in Appendix B. Then, multiply the current modelview
matrix with the shadow matrix.

GLfloat matrix [4][4];

// Compute matrix based on light position and ground plane
// equation. See Appendix B.
shadowMatrix(&matrix[0][0], lightPosition, groundPlaneEquation);
glMultMatrixf(&matrix[0][0]);

5. Unless we do something, the ground plane polygons rendered in step 2 and any shadow
polygons projected to the ground plane will be very nearly co-planar. This causes
problems when depth buffering because the ground plane polygons and the projected
shadow polygons will have almost identical depth values. Unfortunately, because of limited
numerical precision, the determination of whether shadow polygon fragments are “in front
of” ground plane fragments or not is ill-defined and can vary from view to view and even
within a frame. To help disambiguate things, use OpenGL’s polygon offset functionality§ to
nudge the shadow polygon fragments slightly nearer:

§ Using polygon offset is superior to a commonly used alternative. Instead of polygon offset, we could tweak the
ground plane equation slightly so that instead of exactly matching the plane used to draw the ground plane
polygons in drawGroundPlane, the shadow matrix is generated using a plane equation that is slightly elevated
relative to the true ground equation. We want to raise the shadow plane just enough to disambiguate the depth
values for the shadow and ground plane, but not enough so that the translation is noticeable. This works pretty
well, but it is nearly impossible get it to work right for all cases. The problem is that vertex coordinates do not
readily correspond to units of depth buffer precision. Different views and depth buffer resolutions may require
more or less tweaking. And if the user gets the opportunity to look almost exactly parallel and level with the
plane, the fact that the shadow is really floating over the ground plane may become apparent. Polygon offset is a
better solution because it shift only the final depth buffer values for the fragments and the offset is expressed in
terms of depth buffer units.

NVIDIA Corporation Advanced OpenGL Development

18

glEnable(GL_POLYGON_OFFSET_FILL);
glPolygonOffset(1.0, 2.0); // add 2 depth buffer precision units
 // plus slope factor

This way the shadow will always be slightly nearer and therefore visible.

6. Disable lighting, set the current color to be dark gray, and draw the object again.

glDisable(GL_LIGHTING);
glColor3f(0.25, 0.25, 0.25); // dark gray
drawObject(); // draw object as planar projected shadow

This rasterizes the object’s shadow right on top of the ground plane.

7. Cleanup the rendering state.

glDisable(GL_POLYGON_OFFSET);
glPopMatrix();

The planar projected shadow technique works fairly well, but it has several limitations.
Obviously, these shadows can only be cast onto planes and not on arbitrary objects. Likewise,
the resulting shadows generated have hard edges, though in the real world, shadows are “soft”
and fall of gradually. These are complex issues that will be addressed again in Section 6.

Accepting projected planar shadows for what they are, the technique suffers from a few
unfortunate deficiencies. Consider what happens if the shadow falls on a textured surface. As
described above, the shadow is always a uniform dark gray. Ideally, the shadow polygons

Figure 6. Planar projected shadows blended with the ground plane. Notice the
obvious dark patches due to double blending. When animating, these dark spots
jump around because they are a function of the shadowing object’s depth
complexity with respect to the light.

NVIDIA Corporation Advanced OpenGL Development

19

should be drawn just as the actual ground plane surface would look if the shadowed light was
disabled. But that is more involved than it sounds. Just disabling the light source when
projecting the shadow does not work. All the surface normals required for lighting are
squashed by the shadow projection. Likewise, if the ground plane is textured to look like a
stone floor, any texture coordinates assigned to the object’s vertices are jumbled once
projected.

At the very least, instead of a constant dark gray region for the shadow, it would be nice to
blend the shadow with whatever texture the ground plane surface has. Unfortunately, this is
not that easy. The problem is that when the shadow matrix projects the polygons of an object
onto a plane, pixels may be updated more than once. This means that a particular shadowed
pixel may be blended multiple times, but blending multiple times will leave a shadow that is too
dark. Real shadows cannot leave an object doubly dark! This problem is known as double
blending. Figure 6 shows what this double blending looks like.

Many current 3D games simply use planar projected shadows and blend with the ground
despite the double blending problems. Indeed, when I last flipped through a current computer
gaming magazine, I saw an embarrassing number of screen snapshots from shipping games
that suffer from double blended shadows. Apparently today’s game developers believe that
double blended, blotchy shadows are better than no shadows at all. What these game
developers should learn though is that double blended shadows can be eliminated on graphics
hardware supporting stencil.

Projected planar shadows also share an issue with planar reflections. If the ground surface is
non-infinite or is not carefully bounded by walls, the planar projected shadow can extend

Figure 7. Real shadows do not float in mid-air. Yet the left image’s shadow
incorrectly extends out beyond the ground surface, and the image also suffers
from double blending. The right image uses stenciling to correct both the mid-air
shadow and the double blending.

NVIDIA Corporation Advanced OpenGL Development

20

beyond the proper boundary of the ground plane. The left image in Figure 7 shows this
problem.

5. Improving Planar Projected Shadows with Stencil

The planar projected shadow technique can be enhanced using stencil testing. As
demonstrated in the right image in Figure 7, both the double blending issue and the problem of
limiting the shadow to an arbitrary ground plane surface can be solved with stenciling.

The enhanced technique uses stencil testing to assign a unique non-zero stencil value to the
pixels belonging to the ground plane. Then draw the ground plane polygons like this:

glEnable(GL_STENCIL_TEST);
glStencilFunc(GL_ALWAYS, uniqueStencilValue, ~0);
glStencilOp(GL_KEEP, GL_KEEP, GL_REPLACE);
drawGroundPlane();
glDisable(GL_STENCIL_TEST);

Then replace step 6 of the original algorithm with the following:

glDisable(GL_LIGHTING);
glEnable(GL_BLEND); // enable blending to
glBlendFunc(GL_DST_COLOR, GL_ZER0); // modulate existing color
glColor3f(0.5, 0.5, 0.5); // by 50%
glDisable(GL_DEPTH_TEST); // depth testing not necessary!

// Only update pixels tagged with the uniqueStencilValue and
// reset to zero the pixel’s stencil value once updated.
glEnable(GL_STENCIL_TEST);
glStencilFunc(GL_EQUAL, uniqueStencilValue, ~0);
glStencilOp(GL_KEEP, GL_KEEP, GL_ZERO);

drawObject(); // draw object as planar projected shadow

// restore basic modes
glDisable(GL_BLEND);
glDisable(GL_STENCIL_TEST);
glEnable(GL_DEPTH_TEST);

Only pixels tagged with the ground plane’s unique stencil value will be updated when the
shadow is rendered. Blending is enabled, but to avoid double blending, when a pixel is
updated, the stencil value is reset to zero so subsequent pixel updates will fail the stencil test
and be discarded.

Another benefit of using stencil is that the use of polygon offset in step 5 of the original
algorithm is unnecessary. This is advantageous because other multi-pass rendering
techniques require the ability to re-visit exactly the same pixels as a previous rendering pass
(by using the equal depth test) and using polygon offset to tweak depth values will break such
algorithms. The depth test is actually disabled during the stencil-based rendering of the

NVIDIA Corporation Advanced OpenGL Development

21

projected shadow. Because the ground plane is drawn after the shadowing object, any region
of the ground plane obscured by the object itself would not be tagged with the ground plane’s
stencil value because the initial ground plane rendering would fail the depth test for those
pixels. (In general though, when multiple ground planes and other objects are drawn in
arbitrary orders, the stencil test must be used to zero the stencil value of pixels rendered by
objects that occlude previously rendered ground planes.)

The stenciled planar projected shadow technique presented so far just reduces the light
source’s intensity with a modulating blend. But as pointed out earlier, real shadows do not
simply dampen the illumination from a light source; the illumination from an obscured light
source is actually blocked. Using a blend to modulate the shadowed region of a surface
illuminated by a light in an earlier rendering pass is not the same as actually re-rendering the
shadowed region with the shadowed light source disabled. The former dampens the light; the
later blocks it.

While the modulating blend is adequate for quick-and-dirty rendering, in cases where better
lighting fidelity is desirable, a further improvement can better model the actual shadowed
appearance. Below is the procedure for improving the appearance of shadows on planar
surfaces.

When selecting an otherwise unused stencil value for tagging the planar surface’s shadow,
also ensure that one plus the unused stencil value is also otherwise unused. When rendering
the projected shadow, instead of blending with the pixels on the planar surface, increment the
pixel’s stencil value and do not update the color buffer. Then re-render the planar surface
again with lighting enabled but the blocked light source disabled and use stenciling to replace
only pixel’s with the incremented stencil value. For example:

glPushMatrix();
 // apply the planar projected shadow matrix
 shadowMatrix(&matrix[0][0], lightPosition, groundPlaneEquation);
 glMultMatrixf(&matrix[0][0]);

 glDisable(GL_BLEND); // no blending!
 glDisable(GL_DEPTH_TEST); // no depth testing needed
 // accept only pixels matching the planar surface’s stencil value
 glStencilFunc(GL_EQUAL, uniqueStencilValue, ~0);
 // increment the stencil value if accepted
 glStencilOp(GL_KEEP, GL_KEEP, GL_INCR);
 glColorMask(0,0,0,0);
 drawObject(); // draw object as planar projected shadow
 glColorMask(1,1,1,1);
glPopMatrix();

glEnable(GL_LIGHTING); // enable lighting
glDisable(GL_LIGHT0); // but disable the shadowed light source;
 // global ambient light and light from
 // other light sources is still computed
// accept only pixels matching the planar surface’s incremented stencil value
glStencilFunc(GL_EQUAL, uniqueStencilValue+1, ~0);
glStencilOp(GL_KEEP, GL_KEEP, GL_DECR);

NVIDIA Corporation Advanced OpenGL Development

22

// re-render shadowed ground plane pixels with the light disabled
drawGroundPlane();

Note that when incrementing the stencil value of a shadowed pixel, the increment can only
occur once during the rendering of the planar projected shadow because once the stencil
value is incremented, subsequent pixel updates for the pixel will fail the stencil test. There is
no risk of double incrementing a pixel!

Variations of the above technique can be used to generate shadows from multiple shadowing
objects that each block multiple light sources. An object blocking the light of multiple light
sources will create multiple shadows. If these multiple shadows are cast onto a plane, then
zero, one, several, or all of the light sources may illuminate different regions of the plane.
Properly computing the lighting effect for every region of multiple planar surfaces can be
accomplished as follows:

1. Clear the stencil buffer to zero and assign each planar surface an otherwise unused stencil
value. One plus each otherwise unused stencil value should also be otherwise unused.

2. Enable lighting and all the light sources.

3. Without stenciling enabled, render all the objects other than the planar surfaces supporting
shadows with all the light sources enabled. Do not render the planar surfaces yet.

4. For each planar surface, render the planar surface with all light sources disabled. Note that
any global ambient light will still illuminate the surface somewhat. Also during this
rendering pass, tag the planar surface pixels with the planar surface’s unique stencil value.

5. Set the global ambient light in the scene to zero. Subsequent rendering passes will add in
the unblocked illumination from each light source one light at a time, so we want to ensure
that the global ambient light is added only once.

6. For each planar surface:

For each light source:

• Push the modelview matrix.

• Using the planar projected shadow matrix for the current light source and current
planar surface, render all the shadowing objects in between the surface plane and
the light source (clip planes can make this determination automatic) so that stencil
values of shadowed pixels on the current planar surface are incremented. Do not
enable depth testing or update the color buffer during this pass.

• Pop the modelview matrix.

• Enable just the current light source and render all the planar surface’s polygons. Set
up stencil testing to only update the planar surface’s non-incremented stencil value.

NVIDIA Corporation Advanced OpenGL Development

23

This will only update pixels on the surface and not in the light source’s shadow
region. When updating the color buffer, use additive blending to add the illumination
from this light to the planar surface’s illuminated pixels. Also use stencil testing to
increment the stencil value of all the illuminated pixels.

• On the first time completing the above four sub-steps for a particular planar surface,
all the stencil values for the planar surface will be left incremented. When repeating
the above four sub-steps for the surface’s next light source, perform a decrement
instead of an increment and swap matching the “non-incremented” and
“incremented” stencil value. For each subsequent light source, keep reversing the
sense of increment and decrement and the “incremented” versus “non-incremented”
stencil value from the sense of the last step.

7. Restore the global ambient light.

This heavily multi-pass stenciled algorithm can render shadows on multiple distinct planar
surfaces cast by multiple objects blocking multiple light sources. While powerful, the algorithm
is still limited in that shadows are only cast onto planar surfaces and, in particular, objects do
not cast shadows on each other.

shadowing
object

shadow
volume
 (infinite
 extent)

partially
shadowed
object

light
source

eye
position
 surface inside

shadow volume
(shadowed)

surface outside
shadow volume
(illuminated)

Figure 8. A two-dimensional slicing view of a shadow volume.

NVIDIA Corporation Advanced OpenGL Development

24

6. Volumetric Shadows with Stenciled Shadow Volumes

Casting shadows on arbitrary non-planar surfaces requires an approach that is more powerful
than the projected planar shadow trick. In the real world, the shadow cast by an object
blocking a light is a volume, not merely some two-dimensional portion of a plane.

Over two decades ago, Crow10 proposed a class of shadow algorithms11 that model shadow
regions as volumes. These algorithms operate in two stages. The first stage computes the
shadow volume formed by a light source and a set of shadowing objects. The second stage
then determines whether or not a point on a surface is illuminated by the light source or is
instead shadowed due to one or more of the shadowing objects. This determination is based
on whether or not the point on the surface is inside or outside of the shadow volume. If the
point is outside the shadow volume, the point on the surface is illuminated by the light source,
but if the point is inside the shadow volume, the point is not illuminated by the light source and
so is considered shadowed.

Figure 8 shows a two-dimensional slicing of a shadow volume. Surfaces of the partially
shadowed object that are outside the shadow volume are illuminated by the light source, while
surfaces of the partially shadowed object that are inside the shadow volume are shadowed
from the light source. The left image in Figure 9 shows a visualization of the shadow volume
cast by the NVIDIA logo cutout in the scene. The right image uses the stenciled shadow
volume discussed here to shadow pixels within the shadow volume and illuminate pixels

Figure 9. The left image shows a visualization of the shadow volume for the
NVIDIA logo cutout. The right image shows how result of using the shadow
volume to determine what pixels are within the shadow and outside the shadow.

NVIDIA Corporation Advanced OpenGL Development

25

outside the shadow volume. Note that the shadows are properly cast onto curved surfaces
such as the teapot.

6.1. The basic stenciled shadow volume algorithm

The first stage of the shadow volume process is constructing a shadow volume given a point or
directional light source and a set of shadowing objects. We will come back to the issue of how
to construct shadow volume. For now, assume that you know the polygonal boundary
representation** for the shadow. A polygonal boundary representation is a set of non-
intersecting polygons that cleanly divides 3D space into two regions: the inside and outside of
the volume that the polygons bound.

Note that shadow volumes are typically “open” or infinite volumes. Notice that in Figure 8, the
shadow volume extends infinitely away from the light source. The fact that shadow volumes
are infinite is not a practical concern though because we are interested only in the region of the
shadow that is viewable in the current view frustum, a finite region. The intersection of an
infinite shadow volume and a finite view frustum is a finite region.

Given a polygonal boundary representation for the shadow volume, the stencil buffer can be
used to determine whether surface pixels are inside or outside of the shadow volume.4,5,12,13,14

In the discussion that follows, only a single light source is considered though the shadow
volume concept can be applied to multiple lights sources though each light source requires its
own shadow volume.

The first step clears the depth, color, and stencil buffers, then renders the scene with the
possibly shadowed light source enabled. An important result of this first step is to initialize the
depth buffer with the depth of every pixel’s nearest fragment. These nearest fragments
correspond to the visible surfaces in the scene. The following OpenGL commands show what
to do:

glEnable(GL_LIGHTING);
glEnable(GL_LIGHT0); // enable light source
glEnable(GL_DEPTH_TEST); // standard depth testing
glDepthFunc(GL_LEQUAL);
glDepthMask(1);
glDisable(GL_STENCIL_TEST); // no stencil testing (this pass)
glColorMask(1,1,1,1); // update color buffer
glClearStencil(0); // clear stencil to zero
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT | GL_STENCIL_BUFFER_BIT);
renderScene();

Because the light source is enabled during this stage, there are no shadows with respect to the
light source yet. To properly account for the shadowed regions, the third step will re-render

** The jargon b-rep is often used in computational geometry and computer-aided design literature to abbreviate
the term boundary representation.

NVIDIA Corporation Advanced OpenGL Development

26

any and all shadowed pixels with the light disabled. But discussing the third step is getting
ahead of things.

The second step is to determine for each and every pixel in the frame buffer using stencil
testing whether the visible fragment (that is, the closest fragment at each pixel as determined
by depth buffering in the first step) is either inside or outside the shadow volume. We
accomplish this by rendering the polygonal boundary representation of the shadow volume into
the scene. While rendering the shadow volume’s polygonal boundary representation,
OpenGL’s per-fragment state is configured as follows:

glDisable(GL_LIGHTING); // do not waste time lighting
glEnable(GL_DEPTH_TEST);
glDepthFunc(GL_LESS);
glDepthMask(0); // do not disturb the depth buffer
glEnable(GL_STENCIL_TEST);
glStencilFunc(GL_ALWAYS, 0, 0);
glStencilMask(0x1); // just write least significant
 // stencil bit

shadowing object

light
source

eye
position

no shadow volume polygons
 fragments pass the fail depth test at this pixel
zero (even) inverts, final stencil bit value = zero

one shadow volume polygon fragment
 passes the depth test at this pixel
one (odd) invert,
 final stencil bit value = one

two shadow volume polygon fragments
 pass the depth test at this pixel
two (even) inverts,
 final stencil bit value = zero

Figure 10: Two-dimensional view of counting enters and exits from a shadow volume
to determine if inside or outside of the shadowed region.

NVIDIA Corporation Advanced OpenGL Development

27

glStencilOp(GL_KEEP, GL_KEEP, GL_INVERT); // invert stencil bit if depth pass
glColorMask(0,0,0,0); // do not disturb the color buffer

The idea is that whenever a rendered fragment is closer than the depth of the visible fragment
at a given pixel (that is, the pixel’s depth value determined by the first step), invert a bit in the
stencil value for that pixel, but do not disturb the depth or color buffers.

Now, draw all the polygons in the shadow volume’s boundary representation like this:

glDisable(GL_CULL_FACE);
drawShadowVolumePolygons();
glEnable(GL_CULL_FACE);

Note that we disable face culling during this step.†† It is critically important that we render both
front and back facing polygons during this step as will be explained.

What is accomplished in this second step is not obvious. Assume that the eye point (that is,
the viewer location) is outside the shadow. Then once step two is complete, the least
significant stencil bit of every pixel is one if the particular pixel is shadowed with respect to the
shadow and zero if the pixel is lit with respect to the shadow volume. On the other hand, if the
eye point is inside the shadow volume, the opposite is true; that is, one means outside the
shadow and zero means inside the shadow.

To understand why this is true, think about each polygon in the shadow volume’s polygonal
boundary representation as an opportunity to leave or enter the shadow volume. Recall the
assumption that the boundary representation never intersects itself. This means if you are in
the inside of the shadow volume and you cross the shadow volume boundary, you will then be
on the outside. Likewise, if you are outside and you cross the shadow volume boundary, you
will then be on the inside. Given a point that is known to be inside or outside the shadow
volume, the even or odd count of how many times shadow volume polygons are crossed in
getting to some other point indicates whether the other point is inside or outside the shadow
volume.

For the moment, assume the eye point is not inside the shadow volume. For a given point in a
scene, consider the line segment directly connecting the given point and the eye point. How
many times does the line segment intersect any of the polygons in the shadow volume’s
boundary representation? If the number is odd, the given point is in the shadow volume,
hence shadowed; otherwise, the number is even and the given point is outside the shadow
volume, hence lit.

Think through the cases of zero, one, and two interesections with the eye point outside the
shadow volume. In the case of zero interesections with the shadow volume boundary, the
given point must be outside the shadow volume since the eye point is outside the shadow
volume. In the case of one intersection, since the eye point is outside the shadow volume, the

†† If face culling was already disabled, skip the disable and enable of face culling.

NVIDIA Corporation Advanced OpenGL Development

28

given point must be inside the shadow volume to account for the one intersection. In the case
of two interesections, there must be an entry into the shadow volume, but likewise there must
also be an exit from the shadow volume, so the given point must be outside the shadow
volume. Figure 10 visualizes these situations in two dimensions.

Now that you have some intuition for counting the even or odd number of enters and leaves to
the shadow volume boundary, consider what the OpenGL commands for step two accomplish
via stencil testing. The per-fragment state will invert a pixel’s stencil bit when a polygon covers
the pixel and is in front of the pixel’s depth value. Neither the depth buffer or color buffer are
updated in this process; only the stencil buffer is updated during step two.

Note that since we are just determining evenness or oddness, a single bit of stencil is enough
state to determine if we are inside or outside the shadow volume.

Once the second step has tagged pixels as inside or outside the shadow volume, the third and
final step re-renders the scene with stencil testing configured to update only pixels tagged as
inside the shadow volume. To make sure the shadowed light does not light updated pixels, the
shadowed light is disabled. For this step, issue OpenGL commands as follows:

glEnable(GL_LIGHTING); // use lighting
glDisable(GL_LIGHT0); // just not the shadowed light
glEnable(GL_DEPTH_TEST);
glDepthFunc(GL_EQUAL); // must match depth from 1st step
glDepthMask(0);

Figure 11. Scene from shadowfun example.

NVIDIA Corporation Advanced OpenGL Development

29

glEnable(GL_STENCIL_TEST); // and use stencil to update only
glStencilFunc(GL_EQUAL, 0x1, 0x1); // pixels tagged as
glStencilOp(GL_KEEP, GL_KEEP, GL_KEEP); // “in the shadow volume”
glColorMask(1,1,1,1);
renderScene();

Setting the depth test to equal means that only fragments with depth values matching the
depth values from the first pass will update the frame buffer. Additionally, the stencil test
accepts only those pixels with the least-significant stencil bit set to one (that is, those tagged in
the second step as being with the shadow volume). Disabling light source zero means that the
shadowed light source does not contribute to the lighting of the pixel. However, lighting in
general is still enabled so contributions from other light sources or any global ambient light will
still affect the pixel.

6.2. Determining the shadow volume

Once you have a polygonal boundary representation for a shadow volume, the stenciling
approach in the last section is straightforward to apply. However, the last section put off
explaining how to compute the shadow volume for a given light source and a set of shadowing
objects. The reason for this is that computing a correct shadow volume, in general, turns out
to be an involved problem.

In its abstract formulation, the determination of a shadow volume is very similar to the object-
space hidden surface elimination problem. While the object-space hidden surface elimination
problem determines the set of closest unobscured polygons as viewed from an eye point, the
shadow volume determination problem must determine the set of closest unobscured
(unshadowed) polygons from a light source.

The object-space hidden surface elimination problem is complex enough that nearly all
interactive graphics systems use image-space hidden surface elimination algorithms such as
the depth buffer instead.‡‡,15,16,17 While the shadow volume computation stage of the shadow
volume techniques requires object-space computations to construct the shadow volume, the
second stage uses image-space stencil testing. The complete stenciled shadow volume

‡‡ In the same way that image-space hidden surface elimination algorithms such as depth buffering are simpler
than object-space hidden surface removal techniques, image-space shadow algorithms can be simpler than
shadow techniques such as shadow volumes that require object-space computations. Shadow mapping
techniques such as those described by Williams15 and Reeves, Salesin, and Cook16 avoid the problem of object-
space shadow volume construction by operating in image-space. However, shadow mapping techniques have
other problems due to sampling and filtering. Because shadow mapping techniques are similar to texture
mapping techniques, shadow mapping hardware support may become a viable alternative to stenciled shadow
volumes as a means to hardware accelerate shadow rendering in the future. The Silicon Graphics RealityEngine
and InfiniteReality graphics subsystems provide support for shadow mapping today though neither has adequate
filtering or sampling suitable for good quality shadows. These machines support shadow mapping via the
SGIX_depth_texture and SGIX_shadow OpenGL extensions.17 Unfortunately, most existing texture mapping
graphics hardware lacks the critical additional functionality required to support shadow mapping.

NVIDIA Corporation Advanced OpenGL Development

30

technique is therefore a hybrid approach that relies on both object-space and image-space
stages.

Instead of presenting some foolproof object-space algorithm for shadow volume construction
that would work in all cases, yet would be too slow for use in an interactive application, the
approach here is to present techniques for exact shadow volumes in a common special case
and fast approximation of shadow volumes for harder cases.

6.2.1. The special case of a planar cut-out

Consider the shadow volume cast by a single triangle. The shadow volume is formed by the
triangle itself, and then three infinite polygons projected away from the light source. As
mentioned earlier, the polygons projected away from the light source need only to extend
sufficiently beyond the view frustum. Then standard OpenGL view frustum clipping will clip the
polygons to the view frustum automatically.

The basic idea of extending a triangle into its shadow volume can be generalized for arbitrary
n-sided non-intersecting polygons. Appendix C details a routine called extendVolume that
renders a loop of quads that extend from a shadowing polygon defined by a sequence of co-
planar vertices in a direction away from a specified light position. An additional parameter
indicates whether the light position is either a 3D position (for a local or positional light) or a 3D
direction (for an infinite or directional light). A final parameter supplies a scaling factor to
determine how far to scale the extended vertices. This parameter should be sufficiently large
to guarantee that the extended vertices will fall outside of the view frustum.

The polygon defined by the sequence of co-planar vertices passed to extendVolume is
logically part of the shadow volume too. However, because this polygon is assumed to be a

Figure 12. Two scenes from hello2rts example. Note overlapping shadows and
shadows from two light sources.

NVIDIA Corporation Advanced OpenGL Development

31

part of the scene and therefore rendered into the depth buffer during step one of the algorithm
in Section 6.1, it is not necessary to render the polygon itself during the rendering of shadow
volume polygons in step two.

A set of non-intersecting co-planar polygons is referred to as a planar cut-out. Common
shadowing objects such as a wall with multiple windows or a latticework can be approximated
by planar cut-outs. The NVIDIA logo in Figure 9 is an example of a cut-out. Because all the
vertices of a planar cut-out are defined to be co-planar, a cut-out has the nice property that it
never shadows itself. (Think of the cut-out as infinitely thin.) Also, because the cut-out is
defined by a set of polygons, it can be extended into a shadow volume by simply calling
extendVolume for each independent polygon making up the cut-out.

Advanced: While beyond the scope of this paper to explain fully, the static 2D geometry for a
cut-out can be extruded from the Z=0 plane to the Z=1 plane. As a consequence of the
Fundamental Theorem of Projective Geometry,§§ there exists a projective transformation that
will transform static geometry such as an extruded cut-out into a given world space coordinate
system. This projective transformation can be parameterized by the light position, cut-out
position and orientation, and some distance to a plane parallel to the cut-out plane. Like any
projective transformation, the required transformation from cut-out space to world space is
defined by a unique 4 by 4 matrix.

Once this 4 by 4 matrix is determined, this matrix can be concatenated with OpenGL’s
modelview matrix. Then the static extruded 2D geometry for the cut-out as described above
can be projected automatically as part of OpenGL’s projective coordinate transformation
process. Updating the shadow volume when the light source or cut-out position or orientation
changes is simply a matter of computing an updated 4 by 4 matrix. Because the extruded cut-
out geometry is static, it is suitable for compilation into an OpenGL display list. Moreover,
when graphics hardware accelerates OpenGL’s coordinate transformation, the per-vertex
computations required to extend the shadow volume away from the light are off-loaded to the
dedicated graphics hardware. Computing the necessary 4 by 4 matrix is similar to the
problems of view reconstruction or camera calibration. Solving for the 4 by 4 matrix requires
the solution to 15 simultaneous linear equations with 15 unknowns. (A 4 by 4 matrix has 16
variables, but if the matrix represents a projective transformation, one of the 16 values is
dependent on the other 15).

This is the approach used in the example shown in Figure 9. For further background on this
topic, consult Chapter 6 of Penna and Patterson’s useful book on projective geometry.18

§§ The Fundamental Theorem of Projective Geometry says that if A, B, C, D, and E are five points in projective
three-space, no four of which are co-planar, and P, Q, R, S, and T are five points in projective three-space, no
four of which are co-planar, then there is one and only one projective transformation taking A to P, B to Q, C to R,
D to S, and E to T.

NVIDIA Corporation Advanced OpenGL Development

32

6.2.2. Projecting objects flat to make cut-outs

The simplicity of a cut-out can be applied to more complex geometry by projecting a complex
object into a 2D plane. The idea is to flatten the complex geometry into a simple cut-out. Of
course, this will not exactly match the true shadow volume from the real geometry. But it can
make for a good, fast approximation. This simplifying approach is similar to the way a sprite or
billboard is sometimes used in 3D games to replace the geometry of a more complex object.
The true shadow volume of a complex object is replaced with the simpler shadow volume of a
cut-out approximating the complex object.

shadowing object

light
source

eye
position

zero

zero

+1

+1
+2 +2

+3

Figure 13. Counting is used to track being inside and outside of the union of multiple
shadow volumes. A zero count is outside of shadow. A positive count is within the
shadow.

NVIDIA Corporation Advanced OpenGL Development

33

Figure 14. The top image combines the stenciled shadow volume approach with the
projected planar shadow approach. The left image uses the stenciled shadow volume
approach only. The right image uses the planar projected shadow approach only. Notice
that the top image has both the shadow of the teapot spout on the floor and the shadow
from the logo on the teapot too.

NVIDIA Corporation Advanced OpenGL Development

34

Once the 3D geometry is projected flat into a plane, lots of polygons are likely to overlap. A
cut-out requires reducing this 2D pile of polygons to its silhouette boundary. The OpenGL
Utility (GLU) library’s polygon tessellator is well suited to determine the silhouette boundary for
the 2D-projected object. If you use the GLU tessellator, you probably want to choose the
GLU_TESS_WINDING_NONZERO winding rule option to gluTessProperty. You may also
find the GLU_TESS_BOUNDARY_ONLY option useful if you do not need the polygon boundary
tessellation itself. Most often though, you will want both the silhouette boundary and the
polygonal tessellation of the silhouette to cap off the top of the cut-out shadow volume (in the
case of an approximating cut-out, you cannot rely on the cut-out geometry to cap exactly the
shadow volume). In this case, you can use the GLU_TESS_EDGE_FLAG callback to determine
whether edges are exterior, and therefore on the boundary, or interior.

The hello2rts and shadowfun OpenGL stencil shadowing examples14 use the approach of
approximating the shadow volume from the 2D silhouette cut-out of objects. These programs
use OpenGL’s feedback mode to transform and capture the vertices of the object for
constructing a silhouette and eventually a shadow volume. Figure 11 shows a scene from
shadowfun. Figure 12 shows two scenes from hello2rts. Note that the hello2rts scene
has multiple objects casting shadows from multiple light sources. This is accomplished by
adding the contribution of each light excluding shadowed regions into the scene. Each light-
object shadow interaction is modeled separately so two objects and two lights require four
shadow volumes.

One temptation that should be avoided when creating silhouettes and shadow volumes is
using a coarser polygonal representation for the object when constructing the shadow volume.
Because shadows, particularly shadows from local light sources, tend to be larger than the
object itself, the coarseness of the tessellation is magnified in the shadow. Indeed, a common
problem with shadows cast by a curved object such as a sphere is that its enlarged shadow
gives away the object’s true polygonal basis.

Tessellating the silhouette boundary of an object projected into 2D is not a cheap operation.
There are ways to minimize the cost of tessellating a silhouette. If the object’s geometry is
closed and all the edge and face information is available, you can minimize the set of edges
considered by the tessellator. For a closed polygonal representation, only edges that share a
face facing the light and a face facing away from the light will be candidates for silhouette
edges.

6.2.3. Generic shadow volume construction and usage issues

There are a number of common problems associated with building shadow volumes with which
you should be aware. These can cause problems for shadow volume techniques. Models that
appear closed may not in fact be closed due to poor modeling. Sometimes polygons in models
are non-planar. It can be difficult to determine whether the eye is in the shadow or not. In
cases where an object is very nearly planar with a shadow volume plane, the object may pop
in and out of the shadow during animation. Shadow volumes may not interact well with
techniques that use OpenGL’s polygon offset functionality to offset depth values. Refer to
Bergeron11 for suggestions about resolving these difficulties.

NVIDIA Corporation Advanced OpenGL Development

35

A significant performance issue with shadow volumes is the need to re-render the scene
multiple times. One way to minimize the overhead due to multiple renderings is to bound the
shadow region to a conservative shadow frustum. An application that can efficiently cull its
scenery to what is visible from the view frustum can use this same culling approach to also cull
against the conservative shadow frustum.

Additionally, rendering the shadow volume boundary polygons can be a significant consumer
of rasterization and pixel fill rate resources. The more intricate the shadow volume, the more
time must be spent rendering its polygons. And keep in mind that a small object can cast a
very large shadow.

The near clipping plane can cause problems when rendering the shadow volume boundary
polygons. You will need to figure in the near clip plane’s clipping effect into the shadow
volume if shadow volume polygons fall in the pyramidal region between the eye point and the
view frustum’s near clip plane.

So far, the discussion has quietly ignored the issue of shadows cast by semi-transparent
objects. Unfortunately, shadows due to semi-transparent object are a more complex topic than
they might seem at first consideration. Consider that a glass of white wine in bright sunlight.
The shadow from the glass of wine can actually contain bright spots known as caustics
because of how the light has refracted and focused itself within the shadow. These types of
lighting effects can be modeled with ray tracing techniques, but such effects are difficult to
render with today’s available interactive graphics hardware.

6.3. Counting Enters and Leaves with Stencil Testing

There is an alternative to using the invert stencil operation to track both enters and exits of a
shadow volume with a single operation. The alternative is to use the increment stencil
operation to track shadow volume enters and the decrement stencil operation to track exits.
Assuming the viewer is outside the shadow volume, if the stencil count is greater or equal to
one, a pixel is within the shadow, but if the count is zero, a pixel is outside the shadow.

This “counting” approach has the advantage that the shadow volume does not have to be
reduced to its polygonal boundary representation as required by the inverting approach. The
inverting approach requires the elimination of any “internal” boundaries that might result from
unioning two or more shadow volume boundary representations. However with the counting
approach, the union of multiple intersecting shadow volumes can be handled even though the
constituent shadow volumes overlap each other. Overlapping shadow volumes create the
possibility of “entering” the combined (unioned) shadow volume twice without leaving, but
counting properly tracks multiple enters and exits. Inverting a single bit is not as powerful as
counting. Figure 13 shows in 2D how counting can be used for multiple shadow volumes.

With the counting technique, the hard problem of determining the unioned polygonal boundary
representation for a complex shadow volume can be skipped. In the counting approach, you
can represent the shadow volume for the entire scene as simply the union of the shadow

NVIDIA Corporation Advanced OpenGL Development

36

volumes extended from each and every polygon in the whole scene. The shadow volume for
each polygon is easy to construct with the extendVolume routine in Appendix C.

The counting approach can be implemented in OpenGL like this:

glDisable(GL_LIGHTING); // lighting not needed
glEnable(GL_DEPTH_TEST);
glDepthFunc(GL_LESS);
glDepthMask(0); // do not disturb depth buffer
glColorMask(0,0,0,0); // do not disturb color buffer
glStencilMask(~0u);
glEnable(GL_CULL_FACE); // use face culling

glCullFace(GL_BACK); // increment for front facing fragments
glStencilOp(GL_KEEP, GL_KEEP, GL_INCR); // that pass the depth test
for (i=0; i<numPolygonsInScene; i++) // for every polygon in the scene
 renderShadowVolumeForPolygon(i); // call extendVolume for ith polygon

glCullFace(GL_FRONT); // decrement for back facing fragments
glStencilOp(GL_KEEP, GL_KEEP, GL_DECR); // that pass the depth test
for (i=0; i<numPolygonsInScene; i++) // for every polygon in the scene
 renderShadowVolumeForPolygon(i); // call extendVolume for ith polygon

By using OpenGL’s polygon face culling mode, just the front-facing shadow volume polygons
are rendered while incrementing the stencil value of pixels that pass the depth test. Then, in a
second pass, just the back-facing shadow volume polygons are rendered while decrementing
the stencil value of pixels that pass the depth test. As viewed from the eye point, front-facing
shadow volume polygons are “entries” into the shadow volume, while back-facing shadow
volume polygons are “exits” from the shadow volume.

As promising as this approach appears, the approach has a significant practical problem when
used for interactive graphics. The polygons of a shadow volume tend to be large in terms of
the number of pixels they cover. While the fragments generated by rendering the shadow
volumes are invisible, they still take time to process. Rendering a set of large shadow volume
polygons for every polygon in the scene will very significantly increase the cost of rendering
the entire scene. Also note that, unlike in the invert approach, we render the shadow volume
polygons in two passes. While face culling ensures that each polygon is actually only
rendered once, every polygon must still be transformed twice. The up front simplicity of the
counting approach has a high hidden cost due to increased transformation, rasterization, and
pixel update requirements when naively rendering the unioned shadow volume polygons.

NVIDIA Corporation Advanced OpenGL Development

37

Another problem with this approach is that if the polygons in the scene do not seam together
exactly, cracks may appear in the shadow. Admittedly, this is merely a modeling issue, but it
still ends up often being an issue in practice.

The invert approach makes for more expensive object-space silhouette boundary
computations, but this is often cheaper than the pixel update overhead of extending a shadow
volume for each and every polygon in the scene. Additionally, the invert approach requires a
single bit of stencil so that other stencil bits can be used for other purposes. The counting
approach requires enough stencil values to accommodate the deepest nesting of shadow
volume entries which is difficult to know up front. My own practical experience is that that the
pixel update overhead of the counting approach is far too high for its practical use in interactive
graphics.

In practice, hybrid shadow approaches can be utilized to balance the costs of various
approaches. For example, if you refer back to the left image in Figure 9, you will notice that
while the NVIDIA logo casts a shadow on the ground and the balls and teapots in the scene,

Figure 15. Soft shadows using multiple shadow volumes to simulate a non-point
light source. There are banding artifacts. More shadow volumes would reduce the
banding, but increase the rendering time too.

NVIDIA Corporation Advanced OpenGL Development

38

the balls and teapot themselves do not cast a shadow on the ground. The problem is that that
shadow volume only accounts for the NVIDIA logo. The shadows generated by a shadow
volume are only as good as the shadow volume used to generate them. If the shadow volume
included the teapot and balls, the shadows from these objects would be included in the scene.
Unfortunately, constructing such a complex shadow volume would be expensive and difficult.
However, it is easy to construct the shadow volume for just the NVIDIA logo since the logo is a
cut-out.

Because the scene in question has a flat ground plane, a good compromise to improve the
overall appearance of the shadows in the scene without greatly increasing the rendering
overhead is using projected planar shadows as described in Section 5. The planar projected
shadows can account for the ground shadows cast by the teapots and balls. The top image in
Figure 14 show the resulting combined effect, while the left and right images show the
independent contributions of the shadow volume and projected planar shadow approaches.

6.4. Soft Shadows with Shadow Volumes

So far, all the consideration of shadows has been those cast from point or directional light
sources. Shadows in the real world are often the result of area light sources. This accounts
for much (but not all) of the “softness” associated with shadow boundaries. This soft region of
a shadow is known as the penumbra.

A brute force way to approximate the appearance of soft shadows with stenciled shadow
volumes is to model an area light source as a collection of point light sources. Brotman and
Badler19 used this approach to generate their soft shadows.

Figure 15 shows an example of this approach. The image uses 8 clustered point light sources
to approximate a small area light source. A distinct shadow volume is extended from the
NVIDIA logo for each of the 8 point light sources. The scene is first rendered with no lights.
Then each shadow volume is rendered into the stencil buffer, each assigned to a unique
stencil bit. Each of the 8 point light sources is then positioned, enabled at an eighth the
brightness of the combined light, and rendered with stencil testing to only update pixels outside
the light’s particular shadow volume. Additive blending is used to accumulate the contribution
of each light. Because blending is used, we must be careful to set the tested stencil bit if we
update the pixel to avoid the possibility of double blending.

NVIDIA Corporation Advanced OpenGL Development

39

This approach has its limitations. The softness of the shadow depends on an adequate
number of samples. Unfortunately, the time to render the scene increases linearly with the
number of samples used to approximate an area light source. Also unsightly banding artifacts
are introduced if not enough samples are used

If you use enough shadow volume samples, you may run out of frame buffer precision to
accumulate all the lighting contributions. The extended precision of a hardware accumulation
buffer20 can alleviate this problem though.

While a nice idea, this approach to soft shadows is expensive enough that it is not viable for
interactive rendering on today’s graphics hardware.

7. Other Applications for Stenciling

The applications for stencil testing go well beyond reflections and shadows. This section
briefly describes other interesting rendering techniques using stencil testing.

♦ Digital dissolve effects. A “dissolve” pattern in the stencil buffer can combine two scenes
on a per-pixel basis. For example, one scene may be rendered to update only pixels with a
stencil value of zero. A second scene may be rendered to update only pixels with a stencil
value of one. By shifting the stencil value distribution from all 0’s to all 1’s and rendering

Figure 16. Stenciled “digital dissolve” effect. The checker board pattern and a 3D
scene with a sphere and a cone are merged into a single image. The stencil buffer
pattern controls which scene updates which pixels.

NVIDIA Corporation Advanced OpenGL Development

40

both stencil-tested scenes, a smooth digital dissolve can be achieved. Figure 16 shows an
example of this effect.***

♦ Magic haloes. A magic halo extends a glow around an object, but the halo does not
obscure the object itself (that’s what makes it a “magic” halo).21 A game may use a halo to
indicate that a particular character or object has a special capability or power.

The halo effect can be accomplished by first rendering the object with a particular stencil
value. Then apply a scale transformation centered at the object’s center to the modelview
transform. Render the object’s geometry a second time (scaled larger this time) but color
the object based on the intended glow color (instead of the object’s normal color and
texture), and use stenciling to not update pixels tagged with the particular stencil value
used to render the object the first time. This way the halo does not obscure the object.
Finally, undo the scale transformation. Optionally, use blending to blend the halo with the
background behind the object (use stenciling to avoid double blending as necessary). This
works best when the object is relatively convex. However, in the case of a non-convex
object, break the object into convex pieces and extend the halo around each piece. Figure
17 shows an example of such a stenciled magic halo applied to a sphere.

*** The source code for dissolve.c is found in the progs/advanced directory of the GLUT 3.7 source code
distribution. Tom McReynolds wrote the example.

Figure 17. Stenciled magic halo effect. Note that the magic halo is combined
with a stenciled reflection and shadow.

NVIDIA Corporation Advanced OpenGL Development

41

I’ve recently seen a Quake 2 mod that tries to accomplish the basic idea of a magic halo
around certain characters, but without stencil. The scaling approach described above is
attempted, but without the benefit of stencil. Not only is there unsightly double blending of
the halo, but the yellow halo covers and obscures the entire character (instead of just being
a glow around the character). The effect is something akin to seeing a guy walking around
covered in yellow radioactive snot. Stencil could make this look much cooler.

♦ Co-planar geometry. Artifacts due to rendering co-planar geometry crop up in lots of
situations. For example, rendering airplane runways often requires adding runway
markings that should be drawn exactly co-planar to the runway surface. These sorts of
situations create the potential for what is known as “Z fighting” where ordering of depth
buffer values for co-planar or nearly co-planar surfaces varies depending on the
rasterization parameters. The net effect is an indeterminate depth ordering because co-
planar polygon fragments change their visibility from frame to frame and from pixel to pixel.

The planar projected shadows discussed in Section 5 are another common case where co-
planar geometry occurs. Polygon offset can help in some situations, but sometimes it is
important that the depth buffer reflect the true (non-offset) depth values for the geometry in
a scene.

Stencil testing can resolve the ambiguity of co-planar polygons. By rendering the first co-
planar polygon with a particular stencil value, subsequent co-planar polygons can use

Figure 18. The left image suffers from “Z fighting” artifacts due to the co-planar nature
of the runway markings and the airplane’s shadow. The right image uses stencil
testing to render correctly the co-planar geometry.

NVIDIA Corporation Advanced OpenGL Development

42

stencil testing to match the first polygon’s stencil value without depth testing. Figure 18
demonstrates how stencil testing can help improve situations involving co-planar geometry.

♦ Constructive Solid Geometry. Computer-aided design and 3D modeling applications
often require the ability to construct new solids by unioning, intersecting, and subtracting
existing solids. This is commonly called Constructive Solid Geometry or CSG for short.
While an object-space solution is eventually required, fast visualization of CSG models is
important for interactive designing CSG-based objects.

Figure 19. Four Constructive Solid Geometry configurations. Upper left: A or B.
Upper right: A and B. Lower left: A minus B. Lower right: B minus A.

NVIDIA Corporation Advanced OpenGL Development

43

Stencil testing can accelerate the visualization of CSG models.22,23,24 Figure 19 shows
some examples of stenciled CSG rendering.

♦ Visualizing Depth Complexity. For exploring performance issues in interactive 3D
rendering applications, it is often useful to visualize the depth complexity of a given
scene.25 By incrementing the stencil value of a pixel each time it is updated by a fragment,
the stencil buffer can reflect the depth complexity of the rendering scene. Then, the stencil
buffer can be displayed in pseudo-color to visualize the scene’s depth complexity.

A hardware stencil buffer makes this fast enough for interactive visualization and animation
of a 3D game or application’s depth complexity. Figure 20 shows an example of visualizing
depth complexity with stencil testing.

8. Conclusions

Stencil testing provides 3D programmers a versatile means to control per-pixel updates.
Stenciling improves the quality of planar reflections and planar projected shadows. Stenciled
shadow volumes provide a means to render volumetric shadows. For further information about
rendering shadows, I recommend the survey of shadow algorithms written by Woo, Poulin, and
Fournier.26

Keep in mind that stenciling is useful for a host of rendering effects beyond better quality
reflections and shadows.

Figure 20. The left dinosaur is drawn normally. The right dinosaur uses stencil
testing to visualize the depth complexity of the dinosaur.

NVIDIA Corporation Advanced OpenGL Development

44

Stencil testing is already available in mass-market PC graphics hardware such as the RIVA
TNT, and because both OpenGL and DirectX support stencil testing, 3D developers can
expect that stenciling will quickly become a standard graphics hardware feature. 3D
developers that use stencil testing can provide a richer, higher-quality visual experience.

NVIDIA Corporation Advanced OpenGL Development

45

A. Construct a Reflection Matrix given an Arbitrary Plane

The following routine mirrorMatrix constructs a 4x4 matrix suitable for passing to
glMultMatrixf that reflects coordinates through a plane defined by a point p on the plane
and a normalized vector v perpendicular to the plane.27

void mirrorMatrix(GLfloat m[4][4], // OUT: resulting matrix
 GLfloat p[3], // IN: point on the plane
 GLfloat v[3]) // IN: plane perpendicular direction
{
 GLfloat dot = p[0]*v[0] + p[1]*v[1] + p[2]*v[2];

 m[0][0] = 1 - 2*v[0]*v[0];
 m[1][0] = - 2*v[0]*v[1];
 m[2][0] = - 2*v[0]*v[2];
 m[3][0] = 2*dot*v[0];

 m[0][1] = - 2*v[1]*v[0];
 m[1][1] = 1 - 2*v[1]*v[1];
 m[2][1] = - 2*v[1]*v[2];
 m[3][1] = 2*dot*v[1];

 m[0][2] = - 2*v[2]*v[0];
 m[1][2] = - 2*v[2]*v[1];
 m[2][2] = 1 - 2*v[2]*v[2];
 m[3][2] = 2*dot*v[2];

 m[0][3] = 0;
 m[1][3] = 0;
 m[2][3] = 0;
 m[3][3] = 1;
}

Here is an example using mirrorMatrix to reflect a scene through a particular plane:

Glfloat planePoint[3] = { 3.0, 0.0, -1.0 };
Glfloat planeVector[3] = { 0.65, -0.34, 0.6843 }; // normalized
Glfloat matrix[4][4];

glPushMatrix();
 mirrorMatrix(matrix, planePoint, planeVector);
 glMultMatrixf(&matrix[0][0]);
 drawScene();
glPopMatrix();
glDrawScene();

NVIDIA Corporation Advanced OpenGL Development

46

B. Construct a Planar Projected Shadow Matrix given a Point and a Plane Equation

The following routine shadowMatrix constructs a 4x4 matrix suitable for passing to
glMultMatrixf that projects coordinates onto the specified plane (the ground plane) based
on the homogeneous point (the light source position).

void shadowMatrix(Glfloat m[4][4],
 GLfloat plane[4],
 GLfloat light[4])
{
 GLfloat dot = plane[0]*light[0] + plane[1]*light[1] +
 plane[2]*light[2] + plane[3]*light[3];

 m[0][0] = dot - light[0]*plane[0];
 m[1][0] = - light[0]*plane[1];
 m[2][0] = - light[0]*plane[2];
 m[3][0] = - light[0]*plane[3];

 m[0][1] = - light[1]*plane[0];
 m[1][1] = dot - light[1]*plane[1];
 m[2][1] = - light[1]*plane[2];
 m[3][1] = - light[1]*plane[3];

 m[0][2] = - light[2]*plane[0];
 m[1][2] = - light[2]*plane[1];
 m[2][2] = dot - light[2]*plane[2];
 m[3][2] = - light[2]*plane[3];

 m[0][3] = - light[3]*plane[0];
 m[1][3] = - light[3]*plane[1];
 m[2][3] = - light[3]*plane[2];
 m[3][3] = dot - light[3]*plane[3];
}

NVIDIA Corporation Advanced OpenGL Development

47

C. Given a Light Source, Extend a Shadow Volume from a Polygon

The following routine extendVolume renders with OpenGL a loop of quads extended from an
n-side polygon with co-planar vertices v away from a light. In the case of a local (positional)
light, localLight should be non-zero, and then the lightPosition is considered a 3D
position. In the case of an infinite (directional) light, localLight should be zero, and then
lightPosition is treated as a 3D direction. The extendDistance parameter should be a
sufficiently large positive value that ensures that the extended vertices are always extended
beyond the view frustum. The polygon itself is not rendered by this routine.

typedef GLfloat POSITION[3];

void extendVolume(int n, POSITION v[],
 int localLight, POSITION lightPosition,
 float extendDistance)
{
 POSITION extendedVertex, extendDirection;
 int i;

 // If light source is infinite (directional)...
 if (!localLight) {
 // compute direction opposite from light source direction.
 extendDirection[0] = -lightPosition[0];
 extendDirection[1] = -lightPosition[1];
 extendDirection[2] = -lightPosition[2];
 }

 glBegin(GL_QUAD_STRIP);
 // If light source is local (positional)...
 if (localLight) {
 for (i=0; i<n; i++) {
 glVertex3fv(v[i]);
 // Compute per-vertex direction from vertex away from the light source.
 extendDirection[0] = v[i][0] - lightPosition[0];
 extendDirection[1] = v[i][1] - lightPosition[1];
 extendDirection[2] = v[i][2] - lightPosition[2];
 // Compute extended vertex.
 extendedVertex[0] = v[i][0] + extendDirection[0] * extendDistance;
 extendedVertex[1] = v[i][1] + extendDirection[1] * extendDistance;
 extendedVertex[2] = v[i][2] + extendDirection[2] * extendDistance;
 glVertex3fv(extendedVertex);
 }
 // Repeat initial 2 vertices to close the quad strip loop.
 glVertex3fv(v[0]);
 extendDirection[0] = v[0][0] - lightPosition[0];
 extendDirection[1] = v[0][1] - lightPosition[1];
 extendDirection[2] = v[0][2] - lightPosition[2];
 extendedVertex[0] = v[0][0] + extendDirection[0] * extendDistance;
 extendedVertex[1] = v[0][1] + extendDirection[1] * extendDistance;
 extendedVertex[2] = v[0][2] + extendDirection[2] * extendDistance;
 glVertex3fv(extendedVertex);
 // otherwise, light source is infinite (directional)...

NVIDIA Corporation Advanced OpenGL Development

48

 } else {
 for (i=0; i<n; i++) {
 glVertex3fv(v[i]);
 // Compute extended vertex.
 extendedVertex[0] = v[i][0] + extendDirection[0] * extendDistance;
 extendedVertex[1] = v[i][1] + extendDirection[1] * extendDistance;
 extendedVertex[2] = v[i][2] + extendDirection[2] * extendDistance;
 glVertex3fv(extendedVertex);
 }
 // Repeat initial 2 vertices to close the quad strip loop.
 glVertex3fv(v[0]);
 extendedVertex[0] = v[0][0] + extendDirection[0] * extendDistance;
 extendedVertex[1] = v[0][1] + extendDirection[1] * extendDistance;
 extendedVertex[2] = v[0][2] + extendDirection[2] * extendDistance;
 glVertex3fv(extendedVertex);
 }
 glEnd();
}

Here is an example using extendVolume to render the shadow volume for a triangle:

POSITION triangle[3] = { { 0, 0, 0 }, { 1, 0, 0}, { 0, 1, 0 } };
POSITION lightPosition = { 1, 1, 7 };

glDisable(GL_LIGHTING);
extendVolume(3, triangle,
 1, lightPosition, // local light
 100000.0); // big positive number
glEnable(GL_LIGHTING);

NVIDIA Corporation Advanced OpenGL Development

49

1 Kurt Akeley and Tom Jermoluk, “High-Performance Polygon Rendering,” SIGGRAPH ’88
Proceedings, pp. 239-246, August 1988.

2 Mark J. Kilgard, OpenGL Programming for the X Window System, Addison-Wesley, 1996.

3 Tim Hall, “A how to for using OpenGL to render mirrors,” a posting to
comp.graphics.api.opengl (a Usenet newsgroup), August 1, 1996.
http://reality.sgi.com/opengl/tips/TimHall_Reflections.txt

4 Paul Diefenbach and Norman Badler, “Pipeline rendering: Interactive Refractions,
Reflections, and Shadows,” Displays: Special Issue on Interactive Graphics, 15(3), pp. 173-
180, 1994. ftp://ftp.cis.upenn.edu/pub/diefenba/displays.ps.Z

5 Paul Diefenbach, Pipeline Rendering: Interaction and Realism through Hardware-based
Multi-pass Rendering, Ph.D. dissertation, University of Pennsylvania, 1996.
ftp://ftp.cis.upenn.edu/pub/ircs/technical-reports/96-25.ps.Z

6 Tom McReynolds, David Blythe, and cohorts, “Reflections and Refractions,” Programming
with OpenGL: Advanced Rendering, SIGGRAPH course notes, pp. 85-93, 1997.

7 Eyal Ofek and Ari Rappoport, “Interactive Reflections on Curved Surfaces,” SIGGRAPH ‘98
Proceedings, pp. 333-342, 1998.

8 Thant Tessman, “Casting Shadows on Flat Surfaces,” IRIS Universe, winter: 16, 1989.

9 Jim Blinn, “Me and My (Fake) Shadow,” IEEE Computer Graphics and Applications, January
1988. Reprinted in Jim Blinn’s Corner: A Trip Down the Graphics Pipeline, 1996.

10 Frank Crow, “Shadow Algorithms for Computer Graphics,” Computer Graphics, 11(2), pp.
442-448, summer 1977.

11 Phillippe Bergeron, “A General Version of Crow’s Shadow Volumes,” IEEE Computer
Graphics and Applications, September 1986.

12 Tim Heidmann, “Real Shadows in Real Time,” IRIS Universe, (18) pp. 28-31, 1991.

13 Tom McReynolds, David Blythe, and cohorts, “Creating Shadows,” Programming with
OpenGL: Advanced Rendering, SIGGRAPH course notes, pp. 102-111, 1997.

14 Mark J. Kilgard, “OpenGL-based Real-time Shadows,” web page,
http://reality.sgi.com/opengl/tips/rts/

NVIDIA Corporation Advanced OpenGL Development

50

15 Lance Williams, “Casting Curved Shadows on Curved Surfaces,” SIGGRAPH ’78
Proceedings, 12(3), pp. 270-274, 1978. Reprinted in Tutorial: Computer Graphics: Image
Synthesis, Computer Society Press, 1988,

16 William Reeves, David Salesin, and Robert Cook, “Rendering Antialiased Shadows with
Depth Maps,” SIGGRAPH Proceedings ’87, 21(4), pp. 283-291, 1987.

17 Tom McReynolds, David Blythe, and cohorts, “Shadow Maps,” Programming with OpenGL:
Advanced Rendering, SIGGRAPH course notes, pp. 108-110, 1997.

18 Michael Penna and Richard Patterson, “Reconstruction,” Projective Geometry and Its
Applications to Computer Graphics, Prentice-Hall, 1986.

19 Lynne Brotman and Norman Badler, “Generating Soft Shadows with a Depth Buffer
Algorithm," IEEE Computer Graphics and Applications, October 1984.

20 Paul Haeberli and Kurt Akeley, “The Accumulation Buffer: Hardware Support for High-quality
Rendering,” SIGGRAPH ’90 Proceedings, pp. 309-318, August 1990.

21 Mark J. Kilgard, “Rendering a Magic Halo with OpenGL,” web page,
http://reality.sgi.com/opengl/tips/StenciledHaloEffect.html

22 T.F. Wiegand, “Interactive Rendering of CSG Models,” Computer Graphics Forum, Vol. 15,
No. 4, pp. 249-261, October 1996.

23 Nigel Stewart, Geoff Leach, and Sabu John, “An Improved Z-Buffer CSG Rendering
Algorithm,” Eurographics/SIGGRAPH Workshop on Graphics Hardware ’98, pp. 25-30, 25-30.
http://www.eisa.net.au/~nigels/Research/egsggh98.pdf

24 Nigel Stewart, Geoff Leach, and Sabu John, “A Single Z-Buffer CSG Rendering Algorithm
for Convex Objects,” submitted to SIGGRAPH ’99, 1999.
http://www.eisa.net.au/~nigels/Research/siggraph99.pdf

25 James Bowman, “Visualize overdraw via stencil in OpenGL,” web page,
http://reality.sgi.com/jamesb/article2/dinodraw.html

26 Andrew Woo, Pierre Poulin, and Alain Fournier, “A Survey of Shadow Algorithms,” IEEE
Computer Graphics and Applications, November 1990.

27 Ronald Goldman, “Matrices and Transformation,” Graphics Gems, p. 474, 1990.

