NVIDIA OpenGL
Extension Specifications

NVIDIA Corporation

December 9, 1999

NVIDIA OpenGL Extension Specifications

Copyri ght NvI DI A Corporation, 1999.

Portions of this docunment are authored by NVIDI A and are NVID A
Proprietary as noted.

NVIDIA OpenGL Extension Specifications Table of Contents

Tabl e of Contents

Tabl e of Cont ent s. 3
Tabl e of NVIDIA OpenG Extension Support............ ..., 4
EXT abgr . . .o 5
EXT Dgr A, . o 8
EXT bl end _Col or. 10
EXT bl end m nmBX.o e e 13
EXT bl end _subtract. e 16
EXT_conpil ed_VertexX_array. e e 19
EXT _fOg_COOrd. ..o 22
EXT_light _max_exponent. e 29
EXT_packed_pi Xel S. ... 31
EXT_pal etted texture. e 40
EXT_poi Nt _paramet erS. 48
EXT rescale normal e 53
EXT_secondary _CoOl OF e 56
EXT_separate_specular_color......... ... 64
EXT_shared_texture_palette. e 69
EXT_stencil W ap. 72
EXT_texture CUbe _IMBp. e e e e 74
EXT_texture_edge_clanp. 87
EXT texture env_add. e e e e 90
EXT texture env_Combine. e e e e e 93
EXT _texture filter_aniSotropicC........ ... 99
EXT texture lod bias.......... . e e e 104
EXT texture_object. 108
EXT Vert eX array. ..o 116
EXT _vertex_weighting. e 128
NV Dbl end_square. e 139
NV _fog di StanCe. e 142
NV _regi ster _COombi NerS. e e e 146
NV _t eXgen _emD0OSS. . . . ot e 166
NV_ texgen_reflection. e 172
NV texture env_conbined. i e 175
NV vertex_array Fange.ot e e e e e e e 180
SA S texture | od. e 191
WEL EXT swap_control 198

Table of NVIDIA OpenGL Extension Support NVIDIA OpenGL Extension Specifications

Tabl e of NVI DI A Open@G Ext ensi on Support

RI VA 128 | RI VA TNT| GeForce | OpenG. 1.2
Ext ensi on famly famly famly functionality

ARB nultitexture X
EXT_abgr X X
EXT_bgra X X
EXT bl end_col or
EXT bl end_m nnax
EXT bl end_subt ract
EXT_conpi |l ed_vertex_array X
EXT filter_anisotropic
EXT_fog_coord

EXT_l i ght _nax_exponent
EXT_packed_pi xel s X
EXT_pal etted_texture
EXT_poi nter _paraneters X X
EXT rescal e_nor nal
EXT_secondary_col or X
EXT_separ at e_specul ar _col or X
EXT_shared_texture_palette
EXT_stencil _wap X X
EXT_t exture_cube_nmap
EXT_texture_edge_cl anp
EXT texture_env_add
EXT texture_env_conbi ne
EXT texture_| od_bias
EXT_t exture_obj ect X
EXT_vertex_array X
EXT_vertex_wei ghti ng
KTX buffer_region X
NV_bl end_square

NV_f og_di st ance
NV_regi st er _conbi ners
NV_t exgen_enboss

Y
ARB i nagi ng
ARB i nagi ng
ARB i nagi ng

X[X| X

X[X[X

XX X[X[X] X

NV_t exgen_refl ection X

X[>

NV_texture_env_conbi ne4

NV_vertex_array_range

SE@ S nultitexture X

SA@ S texture | od

WEL_EXT_swap_contr ol X

XXX XXX X XXX XX XX X X XX X XXX XXX X[X[XX X XXX XXX X X)X X XX X

W N_swap_hi nt X X

Warni ng: The extension support colums are based on the | atest & greatest
NVI DI A driver release. Check your GL_EXTENSIONS string with gl GetString

at run-tine to deternmne the specific supported extensions for a particul ar
driver version.

NVIDIA OpenGL Extension Specifications EXT_abgr

Nanme
EXT_abgr
Nane Strings
GL_EXT_abgr
Ver si on
$Dat e: 1995/03/31 04:40:18 $ $Revision: 1.10 $
Nurnber
1
Dependenci es
None
Overvi ew
EXT_abgr extends the list of host-nenory color formats. Specifically,
it provides a reverse-order alternative to image format RGBA. The ABGR
conponent order matches the cpack Iris G format on bi g-endi an machi nes.
New Procedures and Functi ons
None
New Tokens

Accepted by the <format> paraneter of DrawPi xels, GetTexl mage,
ReadPi xel s, Texl magelD, and Texl mage2D:

ABGR_EXT 0x8000

Additions to Chapter 2 of the G Specification (QpenG Operation)
None

Additions to Chapter 3 of the GL Specification (Rasterization)

One entry is added to table 3.5 (DrawPi xel s and ReadPi xel s formats).
The new table is:

EXT_abgr NVIDIA OpenGL Extension Specifications

Addi
and

Addi

Addi

Addi

GX

Tar get
Nane Type El ement s Buf f er
COLOR_| NDEX | ndex Col or | ndex Col or
STENCI L_ I NDEX | ndex Stencil val ue St enci |
DEPTH_COVPONENT Conponent Dept h val ue Dept h
RED Conponent R Col or
GREEN Conponent G Col or
BLUE Conponent B Col or
ALPHA Conponent A Col or
RGB Conponent R G B Col or
RGBA Conponent R G B A Col or
LUM NANCE Conponent Lum nance val ue Col or
LUM NANCE_ALPHA Conponent Lum nance val ue, A Col or
ABGR_EXT Conponent A B G R Col or

Tabl e 3.5: DrawPi xel s and ReadPi xels formats. The third col um
gives a description of and the nunber and order of elenments in a

group.

tions to Chapter 4 of the GL Specification (Per-Fragment Operations
t he Framebuffer)

The new format is added to the discussion of Cbtaining Pixels fromthe
Framebuffer. It should read " If the <format> is one of RED, GREEN,
BLUE, ALPHA, RGB, RGBA, ABCR _EXT, LUM NANCE, or LUM NANCE_ALPHA, and
the G. is in color index node, then the color index is obtained."

The new format is added to the discussion of Index Lookup. It should
read "If <format> is one of RED, GREEN, BLUE, ALPHA, RGB, RGBA,
ABGR_EXT, LUM NANCE, or LUM NANCE ALPHA, then the index is used to
reference 4 tables of col or conmponents: PIXEL _MAP_|I _TO R

PI XEL_MAP_| _TO G PIXEL_VMAP_I _TO B, and PI XEL_MAP_|I _TO A. "

tions to Chapter 5 of the GL Specification (Special Functions)

None

tions to Chapter 6 of the GL Specification (State and State Requests)
None

tions to the GLX Specification

None

Pr ot ocol

One entry is added to tables 1 and 5 in the G.X Protocol Specification:
f or mat encodi ng

GL_ABGR_EXT 0x8000

NVIDIA OpenGL Extension Specifications

Table A 2 is al so extended:

f or mat nel enent s
GL_ABGR EXT i
Errors
None
New St at e
None

New | npl ement ati on Dependent State

None

EXT_abgr

EXT_bgra NVIDIA OpenGL Extension Specifications

Nanme
EXT_bgra
Nane Strings
G._EXT_bgra
Ver si on

M crosoft revision 1.0, May 19, 1997 (drewb)
$Dat e: 1997/09/22 23:03:13 $ $Revision: 1.1 $

Nurnber
129

Dependenci es
None

Overvi ew
EXT_bgra extends the list of host-nmenory color formats.
Specifically, it provides formats which match the nmenory | ayout of
W ndows DIBs so that applications can use the sane data in both
W ndows APl calls and Qpen@ pixel APl calls.

New Procedures and Functi ons
None

New Tokens

Accepted by the <format> paraneter of DrawPi xels, GetTexl mage,
ReadPi xel s, Texl magelD, and Texl mage2D:

BGR_EXT 0x80EO
BGRA_EXT 0x80E1

Additions to Chapter 2 of the 1.1 Specification (OpenG. Qperation)
None
Additions to Chapter 3 of the 1.1 Specification (Rasterization)

One entry is added to table 3.5 (DrawPi xel s and ReadPi xel s formats).
The new table is:

NVIDIA OpenGL Extension Specifications

Nane Type El ement s Tar get
COLOR_| NDEX | ndex Col or | ndex Col or
STENCI L_ | NDEX | ndex Stencil val ue St enci |
DEPTH_COVPONENT Conponent Dept h val ue Dept h
RED Conponent R Col or
GREEN Conponent G Col or
BLUE Conponent B Col or
ALPHA Conponent A Col or
RGB Conponent R G B Col or
RGBA Conponent R G B A Col or
LUM NANCE Conponent Lum nance val ue Col or
LUM NANCE_ALPHA Conponent Lum nance val ue, A Col or
BGR_EXT Conponent B, G R Col or
BGRA EXT Conponent B, G R A Col or

Tabl e 3.5: DrawPi xel s and ReadPi xel s formats.

group.

The third colum
gives a description of and the nunber and order of elenments in a

EXT_bgra

Additions to Chapter 4 of the 1.1 Specification (Per-Fragment Operations

and

Addi

Addi

Revi

t he Framebuffer)

The new format is added to the discussion of Obtaining Pixels from

t he Franmebuffer.

It should read

If the <format> is one of RED,

GREEN, BLUE, ALPHA, RGB, RGBA, BGR_EXT, BGRA EXT, LUM NANCE, or
LUM NANCE _ALPHA, and the GL is in color index node, then the col or
i ndex i s obtained."

The new format is added to the discussion of Index Lookup. It should
read "If <format> is one of RED, GREEN, BLUE, ALPHA, RGB, RGBA,
BGR_EXT, BGRA EXT, LUM NANCE, or LUM NANCE ALPHA, then the index is
used to reference 4 tables of col or conmponents: PIXEL MAP_|I _TO R

PI XEL_MAP_| _TO G PIXEL_MAP_| _TO B, and PI XEL_MAP_| _TO A. "

tions to Chapter 5 of the GL Specification (Special Functions)

None

tions to Chapter 6 of the GL Specification (State and State Requests)
None

sion History

Oiginal draft, revision 0.9, Cctober 13, 1995 (drewb)
Creat ed

M nor revision, revision 1.0, My 19, 1997 (drewb)
Renmoved M crosoft Confidential.

EXT_blend_color NVIDIA OpenGL Extension Specifications

Nanme
EXT bl end_col or
Nane Strings
GL_EXT bl end_col or
Ver si on
$Dat e: 1995/03/31 04:40:19 $ $Revision: 1.7 $
Nurnber
2
Dependenci es
None
Overvi ew
Bl endi ng capability is extended by defining a constant color that can
be included in bl ending equations. A typical usage is blending two
RGB i mages. Wthout the constant blend factor, one image nust have
an al pha channel with each pixel set to the desired blend factor.
New Procedures and Functi ons
voi d Bl endCol or EXT(cl anpf red,
cl anpf green,
cl anpf bl ue,
cl anpf al pha);
New Tokens

Accepted by the <sfactor> and <dfactor> paraneters of Bl endFunc:

CONSTANT _COLOR_EXT 0x8001
ONE_M NUS_CONSTANT _COLOR_EXT 0x8002
CONSTANT _ALPHA_EXT 0x8003
ONE_M NUS_CONSTANT _ALPHA EXT 0x8004

Accepted by the <pnane> paraneter of GetBool eanv, Getlntegerv,
Get Fl oatv, and Get Doubl ev:

BLEND COLOR_EXT 0x8005

Additions to Chapter 2 of the G Specification (QpenG Operation)
None

Additions to Chapter 3 of the GL Specification (Rasterization)

None

10

NVIDIA OpenGL Extension Specifications

EXT_blend_color

Additions to Chapter 4 of the G Specification (Per-Fragnment Operations

and the Franebuffer)

The conmands that control

bl endi ng are now Bl endFunc and Bl endCol or EXT.

A constant color to be used in the blending equation is specified by

Bl endCol or EXT. The four
bef ore bei ng stored.
is (0,0,0,0).

The constant col or

bl endi ng factors. Four

DST_COLOR

ONE_M NUS_DST_COLOR
SRC_ALPHA

ONE_M NUS_SRC ALPHA
DST_ALPHA

ONE_M NUS_DST_ALPHA
CONSTANT_COLOR_EXT

ONE_M NUS_CONSTANT_COLOR EXT
CONSTANT_ALPHA_EXT

ONE_M NUS_CONSTANT_ALPHA EXT
SRC_ALPHA_SATURATE

Table 4.1: Values controlling the source bl endi ng function
source bl endi ng val ues they conpute.

nunber of bits in the A color

paranmeters are clanped to the range [0, 1]
The default value for

t he constant bl endi ng col or

can be used in both the source and destination
lines are added to table 4.1 and tabl e 4. 2:

Bl end Factors

(0, 0, 0, 0)

(1, 1, 1, 1)

(Rd/ Kr, Gd/Kg, Bd/Kb, Ad/Ka)

(1, 1, 1, 1) - (Rd/Kr, &d/Kg, Bd/ Kb, Ad/ Ka)
(As, As, As, As) /| Ka

(1, 1, 1, 1) - (As, As, As, As) / Ka
(Ad, Ad, Ad, Ad) / Ka

(1, 1, 1, 1) - (Ad, Ad, Ad, Ad) / Ka
(Rc, Cc, Bc, Ac)

(2, 1, 1, 1) - (Rc, Cc, Bc, Ac)

(Ac, Ac, Ac, Ac)

(2, 1, 1, 1) - (Ac, Ac, Ac, Ac)

(f, f, f, 1)

and the
1, where mis the
and Kb are simlarly

Ka = 2**m -

conmponent. Kr, Kg,

determ ned by the nunber of bits in the R G and B col or conponents.

f = min(As, 1-Ad) / Ka.

SRC_COLOR

ONE_M NUS_SRC COLOR
SRC_ALPHA

ONE_M NUS_SRC ALPHA
DST_ALPHA

ONE_M NUS_DST_ALPHA
CONSTANT_COLOR_EXT

ONE_M NUS_CONSTANT_COLOR EXT
CONSTANT _ALPHA_EXT

ONE_M NUS_CONSTANT_ALPHA EXT

Bl end Factors

(0, 0, 0, 0)

(1, 1, 1, 1)

(Rs/Kr, Gs/Kg, Bs/Kb, As/Ka)

(1, 1, 1, 1) - (Rs/Kr, Gs/Kg, Bs/ Kb, As/ Ka)
(As, As, As, As) /| Ka

(1, 1, 1, 1) - (As, As, As, As) / Ka

(Ad, Ad, Ad, Ad) / Ka

(1, 1, 1, 1) - (Ad, Ad, Ad, Ad) / Ka

(Rc, Cc, Bc, Ac) NEW
(1, 1, 1, 1) - (Re, Gc, Bc, Ac) NEW
(Ac, Ac, Ac, Ac) NEW
(2, 1, 1, 1) - (Ac, Ac, Ac, Ac) NEW

Table 4.2: Values controlling the destination blending function and

t he destination bl endi ng val ues they conpute.
of bits in the A color

mis the nunber

Ka = 2**m -
Kr, Kg,

1, where

conponent . and Kb

are simlarly determ ned by the nunber of bits inthe R G and B

col or conponents.
Rc, CGc, Bc, and Ac are the four conmponents of the constant bl ending
color. These blend factors are not scaled by Kr, Kg, Kb, and Ka,

because they are already in the range [0, 1].

11

NEW

NEW
NEW

EXT_blend_color NVIDIA OpenGL Extension Specifications

Additions to Chapter 5 of the G Specification (Special Functions)
None

Additions to Chapter 6 of the GL Specification (State and State Requests)
None

Additions to the GX Specification
None

GLX Protocol

A new G rendering conmand i s added. The follow ng command is sent to the
server as part of a gl XRender request:

Bl endCol or EXT

20 renderi ng command | ength
4096 renderi ng command opcode
FLOAT32 red

FLOAT32 green
FLOAT32 bl ue
FLOAT32 al pha

A DDA DNODN

Errors

I NVALI D_OPERATION i s generated if Bl endCol orEXT is call ed between
execution of Begin and the corresponding call to End.

New St at e
Initial
Get Val ue Get Command Type Val ue Attrib
BLEND COLOR_EXT CGet Fl oat v C (0,0,0,0) col or-buffer

New | npl ement ati on Dependent State

None

12

NVIDIA OpenGL Extension Specifications EXT_blend_minmax

Nanme
EXT bl end_m nnax

Nane Strings
GL_EXT bl end_m nnax

Ver si on
$Dat e: 1995/03/31 04:40:34 $ $Revision: 1.3 $

Nurnber
37

Dependenci es
None

Overvi ew
Bl endi ng capability is extended by respecifying the entire blend
equation. While this docunment defines only two new equations, the
Bl endEquat i onEXT procedure that it defines will be used by subsequent
extensions to define additional blending equations.
The two new equations defined by this extension produce the mninum
(or maxi mun) col or conmponents of the source and destination col ors.
Taki ng the maxi mumis useful for applications such as maxi num projection
i n medi cal imaging.

| ssues
* I"ve prefixed the ADD token with FUNC, to indicate that the bl end
equation includes the parameters specified by Bl endFunc. (The mn
and nmax equations don't.) |Is this necessary? Is it too ugly?
Is there a better way to acconplish the sane thing?

New Procedures and Functi ons
voi d Bl endEquat i onEXT(enum node) ;

New Tokens

Accepted by the <node> paraneter of Bl endEquati onEXT

FUNC_ADD_EXT 0x8006
M N_EXT 0x8007
MAX_EXT 0x8008

Accepted by the <pnane> paraneter of GetBool eanv, Getlntegerv,
Get Fl oat v, and Get Doubl ev:

BLEND_EQUATI ON_EXT 0x8009

13

EXT_blend_minmax NVIDIA OpenGL Extension Specifications

Additions to Chapter 2 of the G Specification (QpenG Operation)
None

Additions to Chapter 3 of the GL Specification (Rasterization)
None

Additions to Chapter 4 of the G Specification (Per-Fragnment Operations
and the Franebuffer)

The G. Specification defines a single blending equation. This
extensi on introduces a blend equation node that is specified by calling
Bl endEquat i onEXT with one of three enunerated val ues. The default
val ue FUNC_ADD EXT specifies that the bl ending equation defined in
the G. Specification be used. This equation is
C =(C * 9 + (Cd* D

/ 1.0C >1.0

\ C C <=1.0

where Cs and Cd are the source and destination colors, and S and D are
as specified by Bl endFunc.

I f Bl endEquati onEXT is called with <node> set to M N _EXT, the
bl endi ng equati on becones

C=nin (Cs, Cd)

Finally, if BlendEquati onEXT is called with <node> set to MAX EXT, the
bl endi ng equati on becones

C = max (Cs, Cd)

In all cases the blending equation is evaluated separately for each
col or conponent .

Additions to Chapter 5 of the G Specification (Special Functions)
None

Additions to Chapter 6 of the GL Specification (State and State Requests)
None

Additions to the GX Specification
None

GLX Protocol

A new G rendering conmand i s added. The follow ng command is sent to the
server as part of a gl XRender request:

14

NVIDIA OpenGL Extension Specifications EXT_blend_minmax

Bl endEquat i onEXT

2 8 renderi ng command | ength
2 4097 renderi ng command opcode
4 ENUM node

Errors

I NVALID ENUM i s generated by Bl endEquati onEXT if its single paraneter
is not FUNC_ ADD EXT, M N_EXT, or MAX_ EXT.

| NVALI D_OPERATI ON is generated if Bl endEquati onEXT i s executed between
t he execution of Begin and the correspondi ng execution to End.

New St at e
Get Val ue Get Command Type Initial Value Attribute
BLEND EQUATI ON_EXT GCetlntegerv Z3 FUNC_ADD EXT col or-buffer

New | npl ement ati on Dependent State

None

15

EXT_blend_subtract NVIDIA OpenGL Extension Specifications

Nanme
EXT bl end_subt ract
Nane Strings
GL_EXT bl end_subt ract
Ver si on
$Dat e: 1995/03/31 04:40:39 $ $Revision: 1.4 $
Nurnber
38
Dependenci es
EXT bl end_m nnax affects the definition of this extension
Overvi ew
Two addi tional bl ending equations are specified using the interface
defined by EXT_blend_m nmax. These equations are simlar to the
default bl endi ng equati on, but produce the difference of its left
and right hand sides, rather than the sum |Image differences are
useful in many inmage processing applications.
New Procedures and Functi ons
None
New Tokens

Accepted by the <node> paraneter of Bl endEquati onEXT

FUNC_SUBTRACT_EXT 0x800A
FUNC_REVERSE_SUBTRACT_EXT 0x800B

Additions to Chapter 2 of the G Specification (QpenG Operation)
None

Additions to Chapter 3 of the GL Specification (Rasterization)
None

Additions to Chapter 4 of the G Specification (Per-Fragment Operations
and the Franebuffer)

Two addi tional blending equations are defined. |If BlendEquati onEXT is
called with <node> set to FUNC_SUBTRACT_EXT, the bl ending equation
becones

16

NVIDIA OpenGL Extension Specifications EXT_blend_subtract

C =(C * 9 - (Cd* D
/ 0.0C <0.0
\ C C >=0.0

where Cs and Cd are the source and destination colors, and S and D are
as specified by Bl endFunc.

I f Bl endEquati onEXT is called with <node> set to
FUNC_REVERSE _SUBTRACT_EXT, the bl endi ng equati on becones

C =(Cd*D - (Cs* 9
/ 0.0C <0.0
\ C C >=0.0

In all cases the blending equation is evaluated separately for each
col or conponent .

Additions to Chapter 5 of the G Specification (Special Functions)
None

Additions to Chapter 6 of the GL Specification (State and State Requests)
None

Additions to the GX Specification
None

G_.X Prot ocol
None

Dependenci es on EXT_bl end_m nmax
If this extension is supported, but EXT_blend_minmax is not, then
this extension effectively defines the procedure Bl endEquati onEXT, its
par amet er FUNC_ADD EXT, and the query target BLEND EQUATI ON_EXT, as
described in EXT_blend_mnmax. It is therefore as though
EXT_bl end_m nmax were al so supported, except that equati ons M N_EXT
and MAX_EXT are not support ed.

Errors
I NVALID ENUM i s generated by Bl endEquati onEXT if its single paraneter
i s not FUNC_ADD EXT, M N_EXT, NMAX_EXT, FUNC_SUBTRACT_EXT, or
FUNC_REVERSE_SUBTRACT_EXT.

| NVALI D_OPERATI ON i s generated if Bl endEquati onEXT i s executed between
t he execution of Begin and the correspondi ng execution to End.

17

EXT_blend_subtract NVIDIA OpenGL Extension Specifications

New St ate
CGet Val ue Get Command Type Initial Value Attribute
BLEND EQUATI ON_EXT Get I ntegerv Z5 FUNC_ADD EXT col or-buffer

New | npl ement ati on Dependent State

None

18

NVIDIA OpenGL Extension Specifications EXT_compiled_vertex_array

XXX - Not complete yet!!!

Nanme
EXT_conpi |l ed_vertex_array

Nane Strings
GL_EXT_conpi | ed_vertex_array

Ver si on
$Dat e: 1996/11/21 00:52:19 $ $Revision: 1.3 $

Nurber
97

Dependenci es
None

Overvi ew
This extension defines an interface which allows static vertex array
data to be cached or pre-conpiled for nore efficient rendering. This
is useful for inplenmentations which can cache the transformed results
of array data for reuse by several DrawArrays, ArrayEl enent, or
Dr awEl enents conmands. It is also useful for inplenentations which
can transfer array data to fast nmenory for nore efficient processing.
For exanple, rendering an Mby N nesh of quadrilaterals can be
acconpl i shed by setting up vertex arrays containing all of the
vertexes in the nesh and issuing M Drawkl enents conmands each of
whi ch operate on 2 * N vertexes. Each DrawEl enments command after
the first will share N vertexes with the precedi ng Drawkl enents
command. If the vertex array data is |ocked while the DrawEl enents
conmmands are executed, then OpenG. may be able to transform each
of these shared vertexes just once.

| ssues

* |s conmpiled_vertex_array the right name for this extension?

* Shoul d there be an inplenmentati on defined maxi num nunber of array
el ements which can be |ocked at a tinme (i.e. MAX LOCKED ARRAY_SI ZE) ?

Probably not, the |ock request can always be ignored with no resulting
change in functionality if there are insufficent resources, and allow ng
the G. to define this Iimt can nake things difficult for applications.

* Should there be any restrictions on what state can be changed while
the vertex array data is | ocked?

Probably not. The G can check for state changes and invalidate

any cached vertex state that may be affected. This is likely to
cause a performance hit, so the preferred use will be to not change

19

EXT_compiled_vertex_array NVIDIA OpenGL Extension Specifications

state while the vertex array data is | ocked.
New Procedures and Functi ons

voi d LockArrayseEXT (int first, sizei count)
voi d Unl ockArraysEXT (void)

New Tokens

Accepted by the <pnane> paraneter of GetBool eanv, Getlntegerv,
Get Fl oat v, and Get Doubl ev:

ARRAY_ELEMENT LOCK_FI RST_EXT 0x81A8
ARRAY_ELEMENT _LOCK_COUNT_EXT 0x81A9

Additions to Chapter 2 of the 1.1 Specification (OpenG. Qperation)

After the discussion of InterleavedArrays, add a description of
array conpiling/l ocking.

The currently enabl ed vertex arrays can be | ocked with the conmand
LockArraysEXT. Wen the vertex arrays are |ocked, the G

can conpile the array data or the transfornmed results of array
data associated with the currently enabled vertex arrays. The
vertex arrays are unl ocked by the command Unl ockArraysEXT.

Bet ween LockArraysEXT and Unl ockArraysEXT the application

shoul d ensure that none of the array data in the range of

el ements specified by <first> and <count> are changed.

Changes to the array data between the execution of LockArraysEXT

and Unl ockArraysEXT conmmands may affect calls may affect DrawArrays,

ArrayEl enent, or Drawkl enents conmands in non-sequential ways.

VWil e using a conpiled vertex array, references to array el enents

by the commands DrawArrays, ArrayEl enent, or DrawEl enments which are

out side of the range specified by <first> and <count> are undefi ned.
Additions to Chapter 3 of the 1.1 Specification (Rasterization)

None

Additions to Chapter 4 of the 1.1 Specification (Per-Fragment Operations
and the Franme Buffer)

None
Additions to Chapter 5 of the 1.1 Specification (Special Functions)

LockArraysEXT and Unl ockArraysEXT are not conplied into display lists
but are executed inmedi ately.

Additions to Chapter 6 of the 1.1 Specification (State and State Requests)

None

20

NVIDIA OpenGL Extension Specifications EXT_compiled_vertex_array

Additions to the GX Specification
XXX - Not complete yet!!!

G.X Protocol
XXX - Not complete yet!!!

Errors

I NVALI D VALUE is generated if LockArraryskEXT paranmeter <first> is |less
t han zero.

| NVALI D VALUE is generated if LockArrayseEXT paranmeter <count> is |ess than
or equal to zero.

I NVALI D_OPERATI ON is generated if LockArrayseEXT is called between execution
of LockArraysEXT and correspondi ng execution of Unl ockArraysEXT.

| NVALI D_OPERATI ON i s generated if Unl ockArraysEXT is called wi thout a
correspondi ng previous execution of LockArraysEXT.

| NVALI D_OPERATI ON is generated if LockArraysEXT or Unl ockArraysEXT is called
bet ween execution of Begin and the correspondi ng execution of End.

New St at e
Initial
Get Val ue Get Command Type Val ue Attrib
ARRAY_ELEMENT_LOCK_FI RST_EXT Getlntegerv Z+ 0 client-vertex-array
ARRAY_ELEMENT _LOCK_COUNT_EXT Getlntegerv Z+ 0 client-vertex-array

New | npl ement ati on Dependent State

None

21

EXT_fog_coord NVIDIA OpenGL Extension Specifications

Nanme
EXT_fog_coord
Nane Strings
G._EXT_fog_coord
Cont act
Jon Leech, Silicon G aphics (ljp "at' sgi.com
St at us
Shi ppi ng (version 1.6)
Ver si on
$Dat e: 1999/06/21 19:57:19 $ $Revision: 1.11 $
Nurnber
149
Dependenci es

Qpen@ 1.1 is required
The extension is witten agai nst the Open@ 1.2 Specification

Overvi ew
This extension allows specifying an explicit per-vertex fog
coordinate to be used in fog conputations, rather than using a
fragnment dept h-based fog equati on.

| ssues

* Shoul d the specified value be used directly as the fog wei ghting
factor, or in place of the z input to the fog equations?

As the z input; nore flexible and neets | SV requests.
* Do we want vertex array entry points? Interleaved array formats?

Yes for entry points, no for interleaved formats, follow ng the
argunent for secondary_col or.

* Wi ch scal ar types shoul d FogCoord accept? The full range, or just
t he unsigned and float versions? At the nonment it follows Index(),
whi ch takes unsigned byte, signed short, signed int, float, and
doubl e.

Since we're now speci fying a nunber which behaves |ike an
eye-space di stance, rather than a [0,1] quantity, integer types
are | ess useful. However, restricting the comrmands to floating
point forms only introduces some nonorthogonality.

22

NVIDIA OpenGL Extension Specifications EXT_fog_coord

Restrict to only float and double, for now

* Interpolation of the fog coordinate may be perspective-correct or
not. Should this be affected by PERSPECTI VE_CORRECTI ON_HI NT,
FOG HI NT, or another to-be-defined hint?
PERSPECTI VE_CORRECTI ON_ HINT; this is already defined to affect
all interpolated paraneters. Admittedly this is a |oss of
ort hogonal ity.

* Shoul d the current fog coordinate be queryabl e?
Yes, but it's not returned by feedback.

* Control the fog coordinate source via an Enable instead of a fog
par anmet er ?

No. W might want to add nore sources |ater.

* Should the fog coordinate be restricted to non-negative val ues?
Per haps. Eye-coordinate di stance of fragments will be
non- negati ve due to clipping. Specifying explicit negative
coordinates may result in very |large computed f val ues, although
they are defined to be clipped after conputation.

* Use existing DEPTH enum i nstead of FRAGVENT_DEPTH? Change name of
FRAGVENT_DEPTH_EXT to FOG_FRAGVENT_DEPTH_EXT?

Use FRAGVENT_DEPTH EXT; FOG FRAGVENT_DEPTH EXT is sonmewhat
m sl eadi ng, since fragment depth itself has no dependence on
f og.
New Procedures and Functions
voi d FogCoord[fd] EXT(T coord)
voi d FogCoord[fd] vEXT(T coord)
voi d FogCoor dPoi nt er EXT(enum type, sizei stride, void *pointer)
New Tokens
Accepted by the <pname> paraneter of Fogi and Fogf:
FOG_COORDI NATE_SOURCE_EXT 0x8450
Accepted by the <paranr paraneter of Fogi and Fogf:

FOG_COCRDI NATE_EXT 0x8451
FRAGVENT_DEPTH_EXT 0x8452

Accepted by the <pnanme> paraneter of GetBool eanv, Getlntegerv,
Get Fl oat v, and Get Doubl ev:

CURRENT_FOG_COCORDI NATE_EXT 0x8453

FOG_COORDI NATE_ARRAY TYPE_EXT 0x8454
FOG_COORDI NATE_ARRAY_STRI DE_EXT 0x8455

23

EXT_fog_coord NVIDIA OpenGL Extension Specifications

Accepted by the <pnanme> paraneter of GetPointerv:
FOG_COORDI NATE_ARRAY_PO NTER_EXT 0x8456

Accepted by the <array> paraneter of EnabledientState and
Di sabl eCl i ent St at e:

FOG_COORDI NATE_ARRAY_EXT 0x8457
Additions to Chapter 2 of the Qpen@ 1.2 Specification (QpenG Operation)

These changes describe a new current state type, the fog coordinate,
and the commands to specify it:

- (2.6, p. 12) Second paragraph changed to:

"Each vertex is specified with two, three, or four coordinates.
In addition, a current normal, current texture coordinates,
current color, and current fog coordinate may be used in
processi ng each vertex."

- 2.6.3, p. 19) First paragraph changed to

"The only G. commands that are allowed w thin any Begi n/ End
pairs are the commands for specifying vertex coordi nates, vertex
colors, normal coordinates, texture coordinates, and fog

coordi nates (Vertex, Color, Index, Nornmal, TexCoord,
FogCoord)..."

- (2.7, p. 20) Insert the follow ng paragraph followi ng the third
par agr aph descri bing current normals:
" The current fog coodinate is set using
voi d FogCoord[fd] EXT(T coord)
voi d FogCoord[fd] vEXT(T coord)."

The | ast paragraph is changed to read:

"The state required to support vertex specification consists of
four floating-point nunbers to store the current texture
coordinates s, t, r, and q, one floating-point value to store
the current fog coordinate, four floating-point values to store
the current RGBA color, and one floating-point value to store
the current color index. There is no notion of a current vertex,
SO0 no state is devoted to vertex coordinates. The initial values
of s, t, and r of the current texture coordinates are zero; the
initial value of q is one. The initial fog coordinate is zero.
The initial current normal has coordinates (0,0,1). The initial
RGBA color is (RGB/A) =(1,1,1,1). The initial color index is
1.

- (2.8, p. 21) Added fog coordinate conmand for vertex arrays:
Change first paragraph to read:

"The vertex specification conmands described in section 2.7
accept data in alnost any format, but their use requires many

24

NVIDIA OpenGL Extension Specifications EXT_fog_coord

command executions to specify even sinple geonetry. Vertex data
may al so be placed into arrays that are stored in the client's
address space. Blocks of data in these arrays may then be used
to specify nultiple geonetric primtives through the execution
of a single G. conmand. The client may specify up to seven
arrays: one each to store edge flags, texture coordinates, fog
coordi nates, colors, color indices, normals, and vertices. The
comands”

Add to functions listed followi ng first paragraph
voi d FogCoor dPoi nt er EXT(enum type, sizei stride, void *pointer)
Add to table 2.4 (p. 22):

Command Si zes Types

FogCoor dPoi nt er EXT 1 fl oat, doubl e

Starting with the second paragraph on p. 23, change to add
FOG_COORDI NATE_ARRAY_EXT:

"An individual array is enabled or disabled by calling one of

voi d Enabl eCl i ent St at e(enum arr ay)
voi d Di sabl ed i ent St at e(enum arr ay)

with array set to EDGE_FLAG ARRAY, TEXTURE_COORD_ARRAY,
FOG_COORDI NATE_ARRAY_EXT, COLOR_ARRAY, | NDEX_ARRAY,
NORMAL_ARRAY, or VERTEX ARRAY, for the edge flag, texture
coordi nate, fog coordinate, color, color index, normal, or
vertex array, respectively.

The ith el enent of every enabled array is transferred to the G
by calling

void ArrayEl enent (int i)

For each enabled array, it is as though the correspondi ng
command fromsection 2.7 or section 2.6.2 were called with a
pointer to elenment i. For the vertex array, the correspondi ng
command i s Vertex<size><type>v, where <size> is one of [2,3,4],
and <type> is one of [s,i,f,d], corresponding to array types
short, int, float, and double respectively. The correspondi ng
commands for the edge flag, texture coordinate, fog coordinate,
color, color, color index, and normal arrays are EdgeFl agv,
TexCoor d<si ze><t ype>v, FogCoord<type>v, Col or<size><type>v,

| ndex<t ype>v, and Nor nal <type>v, respectively..."

Change pseudocode on p. 27 to disable fog coordinate array for
canned interleaved array formats. After the lines

Di sabl ed i ent St at e(EDGE_FLAG_ARRAY) ;
Di sabl ed i ent St at e(| NDEX_ARRAY) ;

25

EXT_fog_coord NVIDIA OpenGL Extension Specifications

insert the line

Di sabl ed i ent St at e(FOG_COORDI NATE_ARRAY_EXT) ;

Substitute "seven" for every occurence of "six"™ in the fina

par agraph on p. 27.
- (2.12, p. 41) Add fog coordinate to the current rasterpos state
Change the first sentence of the first paragraph to read

"The state required for the current raster position consists of
t hree wi ndow coordinates x_w, y w, and z_w, a clip coordinate
w_c val ue, an eye coordi nate di stance, a fog coordinate, a valid
bit, and associated data consisting of a color and texture
coordi nates. "

Change the | ast paragraph to read

"The current raster position requires six single-precision
floating-point values for its x_w, y w and z_w w ndow
coordinates, its wc clip coordinate, its eye coordinate

di stance, and its fog coordinate, a single valid bit, a color
(RGBA col or and color index), and texture coordinates for
associ ated data. In the initial state, the coordinates and
texture coordi nates are both (0,0,0,1), the fog coordinate is O,
the eye coordinate distance is O, the valid bit is set, the
associ ated RGBA color is (1,1,1,1), and the associated col or
index color is 1. In RGBA node, the associated col or index

al ways has its initial value; in color index node, the RGBA
color always maintains its initial value."

- (3.10, p. 139) Change the second and third paragraphs to read

"This factor f may be conputed according to one of three
equations: ™"

f
f
f

exp(-d*c) (3.24)
exp(-(d*c)"2) (3.25)
(e-c)/(e-5s) (3.26)

If the fog source (as defined bel ow) is FRAGVENT _DEPTH EXT, then
c is the eye-coordinate distance fromthe eye, (0 0 0 1) in eye
coordi nates, to the fragnment center. If the fog source is
FOG_COCRDI NATE_EXT, then c is the interpol ated value of the fog
coordinate for this fragment. The equation and the fog source,
along with either d or e and s, is specified with

voi d Fog{if}(enum pnane, T param;
voi d Fog{if}v(enum pname, T parans);

I f <pname> is FOG_MODE, then <parant nust be, or <paranm> mnust
point to an integer that is one of the synbolic constants EXP
EXP2, or LINEAR, in which case equation 3.24, 3.25, or 3.26,
respectively, is selected for the fog calculation (if, when 3.26
is selected, e = s, results are undefined). If <pnane> is
FOG_COCRDI NATE_SOURCE_EXT, then <paramP is or <paranms> points to

26

NVIDIA OpenGL Extension Specifications EXT_fog_coord

an integer that is one of the synbolic constants
FRAGVENT_DEPTH_EXT or FOG COORDI NATE_EXT. |f <pnane> is
FOG_DENSI TY, FOG START, or FOG END, then <parane is or <parans>
points to a value that is d, s, or e, respectively. If dis
specified less than zero, the error I NVALID VALUE results.”

- (3.10, p. 140) Change the | ast paragraph preceding section 3.11
to read

"The state required for fog consists of a three val ued integer
to select the fog equation, three floating-point values d, e,
and s, an RGBA fog color and a fog col or index, a two-val ued
integer to select the fog coordinate source, and a single bit to
i ndi cate whether or not fog is enabled. In the initial state,
fog is disabled, FOG COORDI NATE SOURCE _EXT is
FRAGVENT_DEPTH EXT, FOG MXDE is EXP, d = 1.0, e = 1.0, and s =
0.0, Cf =(0,0,0,0) and i _f=0."
Additions to Chapter 3 of the Qpen@ 1.2.1 Specification (Rasterization)
None

Additions to Chapter 4 of the Qpen@ 1.2.1 Specification (Per-Fragment
Qperations and the Frane Buffer)

None
Additions to Chapter 5 of the Qpen@ 1.2.1 Specification (Special Functions)
None

Additions to Chapter 6 of the OQpen@ 1.2 Specification (State and State
Request s)

None

Additions to Appendix A of the Open@ 1.2.1 Specification (lnvariance)
None

Additions to the GLX / WA / AG Specifications
None

GLX Protocol

Two new GL rendering commands are added. The foll owi ng commands are
sent to the server as part of a gl XRender request:

FogCoor df vEXT
2 8 renderi ng command | ength
2 4124 renderi ng command opcode
4 FLOAT32 v[0]

27

EXT_fog_coord NVIDIA OpenGL Extension Specifications

FogCoor ddvEXT
2 12 renderi ng command | ength
2 4125 renderi ng command opcode
8 FLOAT64 v[0]
Errors

I NVALID ENUM i s generated i f FogCoor dPoi nt er EXT paraneter <type> is
not FLOAT or DOUBLE.

I NVALI D VALUE is generated if FogCoordPoi nter EXT paramneter <stride>
i s negative.

New St at e

(table 6.5, p. 195)

Get Val ue Type Get Command Initial Value Description Sec Attribute

CURRENT_FOG_COORDI NATE_EXT R Get | nt egerv, 0 Current 2.7 current
Get Fl oat v fog coordinate

(table 6.6, p. 197)

I'nitial
Gt Val ue Type Gt Gonmand Val ue Description Sec Attribute
FOG Q00RD NATE_ARRAY_EXT B | senabl ed Fal se Fog coord array enabl e 2.8 vertex-array
FOG Q00RD NATE_ARRAY._TYPE EXT Z3 Gt I ntegerv FLQAT Type of fog coordinate 2.8 vertex-array
FOG Q00”0 NATE_ARRAY_STR DCE EXT Z+ Gt I ntegerv 0 Sride between fog coords 2.8 vertex-array
FOG Q000 NATE ARRAY PONTER EXT Y Get Poi nterv 0 Pointer to the fog coord 2.8 vertex-array

array

(table 6.8, p. 198)
Get Val ue Type Get Command Initial Value Descri ption Sec Attribute

FOG_COORDI NATE_SOURCE_EXT Z2 Get | nt egerv, FRAGVENT_DEPTH EXT Source of fog 3.10 fog
Get Fl oat v coordi nate for
fog cal cul ation

Revi sion History
* Revision 1.6 - Functionality complete

* Revision 1.7-1.9 - Fix typos and add fields to bring up to date with
t he new extension tenplate. No functionality changes.

28

NVIDIA OpenGL Extension Specifications EXT_light_max_exponent

Nanme
EXT_| i ght _nmax_exponent

Nane Strings
GL_EXT_I i ght _max_exponent

Noti ce
Copyri ght NvI DI A Corporation, 1999.

Ver si on
August 17, 1999

Dependenci es
None

Overvi ew
Def ault OpenG. does not permit a shininess or spot exponent over
128.0. This extension pernits inplenentations to support and
adverti se a maxi mum shi ni ness and spot exponent beyond 128.0.
Not e that extrenely high exponents for shininess and/or spot |ight
cutoff will require sufficiently high tessellation for acceptable
lighting results.
Paul Deifenbach's thesis suggests that higher exponents are
necessary to approxi mate BRDFs with per-vertex |ligthing and
mul ti pl e passes.

New Procedures and Functions
None

New Tokens

Accepted by the <pnanme> paraneters of GetBool eanv, Getlntegerv,
Get Fl oatv, and Get Doubl ev:

MAX_SHI NI NESS_EXT 0x8507
MAX_SPOT_EXPONENT _EXT 0x8508

Additions to Chapter 2 of the G Specification (QpenG. Operation)
In Table 2.7, change the srmrange entry to read:
"(range: [0.0, value of MAX SHI NI NESS EXT])"
In Table 2.7, change the srli range entry to read:

"(range: [0.0, value of MAX SPOT_EXPONENT_EXT])"

29

EXT_light_max_exponent NVIDIA OpenGL Extension Specifications

Add to the end of the second paragraph in Section 2.13.2:

"The val ues of MAX_SHI NI NESS_EXT and MAX_SPOT_EXPONENT_EXT are
i npl enent ati on dependent, but nust be equal or greater than 128."

Additions to Chapter 3 of the GL Specification (Rasterization)
None

Additions to Chapter 4 of the G Specification (Per-Fragnment Operations
and the Franebuffer)

None.
Additions to Chapter 5 of the G Specification (Special Functions)
None
Additions to Chapter 6 of the GL Specification (State and State Requests)
None
Additions to the GX Specification
None
GLX Protocol
None
Errors

I NVALI D VALUE is generated by Material if enumis SH NI NESS and the
shi ni ness paramis greater than the MAX_SH NI NESS_EXT.

I NVALI D VALUE is generated by Material if enumis SPOT_EXPONENT and
t he shininess paramis greater than the MAX_SPOT_EXPONENT_EXT.

New St at e
None.
New | npl ement ati on Dependent State

(table 6.24, p214) add the follow ng entries:

M ni mum

Get Val ue Type Get Command Val ue Description Sec Attribute
MAX_SHI NI NESS_EXT Z+ Get | nt egerv 128 Maxi mum 2.13.2 -

shi ni ness for

specul ar lighting
MAX_SPOT_EXPONENT_EXT Z+ Get | nt egerv 128 Maxi mum 2.13.2 -

exponent for

spot lights

30

NVIDIA OpenGL Extension Specifications EXT_packed_pixels

Name

EXT_packed_pi xel s

Nane Strings

GL_EXT_packed_pi xel s

Ver si on

$Date: 1997/09/22 23:23:58 $ $Revision: 1.21 $

Nunber

23

Dependenci es

EXT_abgr affects the definition of this extension

EXT texture3D affects the definition of this extension
EXT subtexture affects the definition of this extension
EXT_hi stogram affects the definition of this extension
EXT convol ution affects the definition of this extension
SA color _table affects the definition of this extension
SA S textured4D affects the definition of this extension
EXT_cnyka affects the definition of this extension

Overvi ew

Thi s extension provides support for packed pixels in host nenmory. A
packed pixel is represented entirely by one unsigned byte, one

unsi gned short, or one unsigned integer. The fields with the packed
pi xel are not proper machine types, but the pixel as a whole is. Thus
t he pi xel storage nodes, including PACK SKIP_PI XELS, PACK ROW LENGTH,
PACK_SKI P_ROWS, PACK | MAGE_HEI GHT_EXT, PACK_SKI P_I MAGES_EXT,
PACK_SWAP_BYTES, PACK_ALI GNMENT, and their unpacki ng counterparts all
work correctly with packed pixels.

Procedures and Functi ons
None
Tokens

Accepted by the <type> parameter of DrawPi xels, ReadPi xels, Texl magelD,
Texl mage2D, Get Texl nage, Texl mage3DEXT, TexSubl magelDEXT,

TexSubl mage2DEXT, TexSubl mage3DEXT, GCet Hi st ogranEXT, Get M nmaxEXT,
Convol uti onFi | ter 1DEXT, Convol uti onFilter2DEXT, Convol uti onFilter 3DEXT,
CGet Convol utionFil ter EXT, Separabl eFilter2DEXT, Separabl eFi |t er 3DEXT,
CGet Separ abl eFi | t er EXT, Col or Tabl eSA, GCet Col or Tabl eSE, Texl mage4DSG S,
and TexSubl mage4DSA S:

UNSI GNED_BYTE_3_3_2_EXT 0x8032
UNSI GNED_SHORT 4 4 4 4 _EXT 0x8033
UNSI GNED_SHORT 5 5 5 1 _EXT 0x8034
UNSI GNED_| NT_8_8_8_8_EXT 0x8035
UNSI GNED_| NT_10_10_10 2 EXT 0x8036

31

EXT_packed_pixels NVIDIA OpenGL Extension Specifications

Additions to Chapter 2 of the 1.0 Specification (OpenG. Qperation)
None
Additions to Chapter 3 of the 1.0 Specification (Rasterization)

The five tokens defined by this extension are added to Table 3. 4:

<type> Par anet er Cor r espondi ng Speci al
Token Val ue G Data Type Interpretation
UNSI GNED_BYTE ubyt e No
BYTE byt e No

UNSI GNED_SHORT ushort No
SHORT short No

UNSI GNED_| NT ui nt No

| NT i nt No
FLOAT fl oat No

Bl TMAP ubyte Yes
UNSI GNED BYTE 3_3_2_ EXT ubyt e Yes
UNSI GNED_SHORT_4_4_4 4 EXT ushort Yes
UNSI GNED_SHORT_5_5_5 1 EXT ushort Yes
UNSI GNED_| NT_8_8_8_8_EXT ui nt Yes
UNSI GNED_| NT_10_10_10_2_EXT uint Yes

Tabl e 3.4: DrawPi xel s and ReadPi xel s <type> paraneter val ues and the
corresponding GL data types. Refer to table 2.2 for definitions of
G data types. Special interpretations are described near the end
of section 3.6.3.

[Section 3.6.3 of the GL Specification (Rasterization of Pixel
Rectangles) is rewitten as follows:]

3.6.3 Rasterization of Pixel Rectangles

The process of draw ng pixels encoded in host nmenory is diagramed in
Figure 3.7. W describe the stages of this process in the order in which
t hey occur.

Pi xel s are drawn using

voi d DrawPi xel s(sizei w dth,
si zei height,
enum f or mat ,
enum t ype,
voi d* data);

<format> is a synbolic constant indicating what the values in nmenory
represent. <wi dth> and <height> are the wi dth and hei ght, respectively,
of the pixel rectangle to be drawn. <data> is a pointer to the data to
be drawn. These data are represented with one of seven G data types,
specified by <type>. The correspondence between the thirteen <type>
token val ues and the GL data types they indicate is given in Table 3.4.
If the GL is in color index node and <format> is not one of COLOR_| NDEX,
STENCI L_| NDEX, or DEPTH COVPONENT, then the error | NVALI D_OPERATI ON
occurs. Sone additional constraints on the conbinations of <format>

32

NVIDIA OpenGL Extension Specifications

EXT_packed_pixels

and <type> val ues that are accepted are discussed bel ow.

Unpacki ng

Data are taken from host

types short and ushort),

on the <formt>,

menory as a sequence of signed or unsigned bytes
(GL data types byte and ubyte),
signed or unsigned integers (GL data types int
and uint), or floating-point values (G. data type float).
are grouped into sets of one,
to forma group.
groups obtained from nenory.

signed or unsigned short integers (G data

These el enents

two, three, four, or five values, depending

Table 3.5 sunmari zes the fornat of

It also indicates those formats that yield

i ndi ces and those that yield conponents.

COLOR_| NDEX
STENCI L_| NDEX
DEPTH_COVPONENT
RED

GREEN

BLUE

ALPHA

RGB

RGBA

ABGR_EXT
COMYK_EXT
CMYKA_EXT

LUM NANCE

LUM NANCE_ALPHA

Tabl e 3.5: DrawPi xel s and ReadPi xel s formats.

Tar get
Buf f er

El ement Meani ng and Order

Col or index

Stenci | index

Dept h conponent

R conmponent

G conponent

B conponent

A conponent

R, G B conponents

R, G B, A conponents

A, B, G R conponents

Cyan, Magenta, Yellow, Black components
Cyan, Magenta, Yellow, Black, A components
Lum nance conponent

Lum nance, A conponents

The third col um

gives a description of and the nunber and order of elenments in a

group.

By default the values of each GL data type are interpreted as they would
be specified in the | anguage of the client's G binding. If

UNPACK_SWAP BYTES is set to TRUE, however, then the val ues are
interpreted with the bit orderings nodified as per the table below The
nodi fied bit orderings are defined only if the G. data type ubyte has
eight bits, and then for each specific GL data type only if that type

is represented with 8, 16,

El ement Def aul t

Si ze Bit Ordering
8-bit [7..0]

16-bi t [15..0]
32-bit [31..0]

32 bits.

Modified Bit Odering

(..o

[7..0] [15..8]

[7..0] [15..8] [23..16] [31..24]

Table: Bit ordering nodification of el ements when UNPACK _SWAP_BYTES

is TRUE.

These reorderings are defined only when G. data type ubyte

has 8 bits, and then only for GL data types with 8, 16, or 32 bits.

The groups in nenory are treated as being arranged in a rectangle. This
rectangl e consists of a series of rows, with the first elenment of the
first group of the first

row pointed to by the pointer passed to

33

EXT_packed_pixels NVIDIA OpenGL Extension Specifications

DrawPi xel s. If the value of UNPACK ROW LENGIH is not positive, then the
nunber of groups in a rowis <wi dth>; otherw se the nunber of groups is
UNPACK ROV LENGTH. If the first elenent of the first rowis at |ocation
p in nmenory, then the location of the first element of the Nth rowis

p + Nk

where N is the row nunber (counting fromzero) and k is defined as

[nl s >= a
k = <

\ a/ls * ceiling(snl/a) s < a
where n is the nunber of elenments in a group, | is the nunber of groups
inarow ais the value of UNPACK ALI GNMENT, and s is the size,
inunits of GL ubytes, of an element. |If the nunber of bits per

element is not 1, 2, 4, or 8 tinmes the nunber of bits in a G ubyte
then k = nl for all values of a.

There is a nechanismfor selecting a sub-rectangle of groups froma

| arger containing rectangle. This mechanismrelies on three integer

par anmet ers: UNPACK _ROW LENGTH, UNPACK_SKI P_ROAS, and UNPACK_SKI P_PI XELS.
Bef ore obtaining the first group fromnenory, the pointer supplied to
DrawPi xel s is effectively advanced by

UNPACK SKI P_PI XELS * n + UNPACK SKIP_ROA5 * k

el ements. Then <wi dt h> groups are obtai ned from contiguous el enents
in menory (w thout advancing the pointer), after which the pointer is
advanced by k el enents. <height> sets of <w dth> groups of values are
obtained this way. See Figure 3.8.

Calling DrawPi xels with a <type> of UNSI GNED BYTE 3_3 2,

UNSI GNED_SHORT_4_4_4 4, UNSI GNED SHORT_5_5_5_ 1, UNSI GNED | NT_8_8_8_8,

or UNSIGNED I NT_10_10 10 2 is a special case in which all the elenents
of each group are packed into a single unsigned byte, unsigned short,

or unsigned int, depending on the type. The nunber of elenents per
packed pixel is fixed by the type, and nust match the nunber of

el ements per group indicated by the <format> paraneter. (See the table

bel ow.) The error I NVALID OPERATION is generated if a m smatch occurs.

G Nurber
<type> Par anet er Dat a of Mat chi ng
Token Nane Type El ements Pixel Formats
UNSI GNED BYTE 3_3_2_ EXT ubyt e 3 RGB
UNSI GNED_SHORT_4_4_4 4 EXT ushort 4 RGBA, ABGR_EXT, CMYK_EXT
UNSI GNED_SHORT_5_5_5 1 EXT ushort 4 RGBA, ABGR_EXT, CMYK_EXT
UNSI GNED_| NT_8_8_8_8_EXT ui nt 4 RGBA, ABGR_EXT, CMYK_EXT
UNSI GNED_| NT_10_10_10_2_EXT uint 4 RGBA, ABGR_EXT, CMYK_EXT

Bitfield | ocations of the first, second, third, and fourth el enents

of each packed pixel type are illustrated in the diagrans bel ow. Each
bitfield is interpreted as an unsigned integer value. |If the base G
type is supported with nore than the m ni mum precision (e.g. a 9-bit
byte) the packed elenents are right-justified in the pixel

34

NVIDIA OpenGL Extension Specifications

UNSI GNED_BYTE_3_3_2_EXT

7 6 5 4 3

Fom e e Fomm e m oo

| |

Fom e e Fomm e m oo
first second
el ement el emen

first s
el ement e

first

first
el ement

UNSI GNED_I NT_10_10_10_2_EXT

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10

first
el ement

The assignnment of elenments to

described in the table
First

For mat El enent

RGB red

RGBA red

ABGR_EXT al pha

CWYK_EXT cyan

third
t el ement

econd
| enent

second
el ement

second
el ement

second
el ement

bel ow.

Second Third

El enent El enent
green bl ue
green bl ue
bl ue green

magent a yel | ow

35

third

third

thir

el ement

fields in the packed pixel

Fourt
El ene

al pha
red
bl ack

EXT_packed_pixels

2 1 0
_____________ +
|
_____________ +
fourth
el ement
2 1 0
| |
fourth
el ement

d fourth
el ement

9 8 7 6 5 4 3 2 1 O

----------------------------- Ho-- -+
| |
----------------------------- Ho-- -+
third fourth

el ement el ement

is as

h
nt

EXT_packed_pixels NVIDIA OpenGL Extension Specifications

Byte swapping, if enabled, is perforned before the elenents are
extracted fromeach pixel. The above di scussions of row | ength and

i mage extraction are valid for packed pixels, if "group"” is substituted
for "elenment"” and the nunber of elenents per group is understood to

be one.

Calling DrawPi xels with a <type> of BITMAP is a special case in which

the data are a series of G ubyte values. Each ubyte val ue specifies

8 1-bit elements with its 8 least-significant bits. The 8 single-bit

el ements are ordered fromnost significant to | east significant if the
val ue of UNPACK LSB FIRST is FALSE; otherw se, the ordering is from

| east significant to nobst significant. The values of bits other than

the 8 least significant in each ubyte are not significant.

The first element of the first rowis the first bit (as defined above)
of the ubyte pointed to by the pointer passed to DrawPixels. The first
el ement of the second rowis the first bit (again as defined above) of
the ubyte at location p+k, where k is conputed as

k = a * ceiling(nl/8a)

There is a nechanismfor selecting a sub-rectangle of elements from
a BITMAP image as well. Before obtaining the first element from nmenory,
the pointer supplied to DrawPi xels is effectively advanced by

UNPACK_SKI P_ROWS * k

ubytes. Then UNPACK SKIP_PI XELS 1-bit elements are ignored, and the
subsequent <width> 1-bit el ements are obtained, w thout advancing the
ubyte pointer, after which the pointer is advanced by k ubytes. <height>
sets of <width> elenents are obtained this way.

Conversion to floating-point

This step applies only to groups of components. It is not performed on
i ndices. Each elenent in a group is converted to a floating-point val ue
according to the appropriate formula in Table 2.4 (section 2.12).

Unsi gned integer bitfields extracted from packed pixels are interpreted
using the formul a

f=c/ ((2**N)-1)

where c is the value of the bitfield (interpreted as an unsigned
integer), Nis the nunber of bits in the bitfield, and the division is
performed in floating point.

[End of changes to Section 3.6. 3]

If this extension is supported, all commands that accept pixel data
al so accept packed pixel data. These commands are DrawPi xel s,

Texl magelD, Texl mage2D, Texl mage3DEXT, TexSubl magelDEXT,

TexSubl mage2DEXT, TexSubl mage3DEXT, Convol utionFilter 1DEXT

Convol utionFi |l t er 2DEXT, Convol utionFilter3DEXT, Separabl eFilter 2DEXT,
Separ abl eFi | t er 3DEXT, Col or Tabl eSG@, Texl mage4DSA S, and

TexSubl mage4DSG S.

36

NVIDIA OpenGL Extension Specifications EXT_packed_pixels

Additions to Chapter 4 of the 1.0 Specification (Per-Fragment Operations
and the Franebuffer)

[Make the foll owi ng changes to Section 4.3.2 (Reading Pixels):]
Fi nal Conversion

For an index, if the <type> is not FLOAT, final conversion consists of
maski ng the index with the value given in Table 4.6; if the <type> is
FLOAT, then the integer index is converted to a GL float data val ue.
For a component, each component is first clanped to [0,1]. Then

t he appropriate conversion fornmula fromTable 4.7 is applied to the
conponent .

<type> Paraneter |ndex Mask

UNSI GNED_BYTE 2**8 - 1
Bl TMAP 1

BYTE 2%*7 - 1
UNSI GNED_SHORT 2**16 - 1
SHORT 2**15 - 1
UNSI GNED_I NT 2*¥*32 - 1
I NT 2**31 - 1

Table 4.6: Index masks used by ReadPi xels. Floating point data
are not masked.

<type> GL Data Conponent

Par anet er Type Conver si on Fornul a

UNSI GNED_BYTE ubyte c = ((2**8)-1)*f

BYTE byte c = (((2**8)-1)*f-1)/2
UNSI GNED_SHORT ushort c = ((2**16)-1)*f

SHORT short c = (((2**16)-1)*f-1)/2
UNSI GNED_| NT ui nt c = ((2*%*32)-1)*f

I NT i nt c = (((2**32)-1)*f-1)/2
FLOAT fl oat c =f

UNSI GNED_BYTE_3_3_2_EXT ubyte c = ((2**N)-1)*f

UNSI GNED_SHORT_4_4_4_4 EXT ushort c = ((2**N)-1)*f

UNSI GNED_SHORT_5_5_5_1_EXT ushort c = ((2**N)-1)*f

UNSI GNED_| NT_8_8_8_8_EXT ui nt c = ((2**N)-1)*f

UNSI GNED_| NT_10_10_10_2_EXT uint c = ((2**N)-1)*f

Table 4.7: Reversed conponent conversions - used when conponent data
are being returned to client nmenory. Color, normal, and depth
conponents are converted fromthe internal fl oating-point
representation (f) to a datum of the specified G. data type (c) using
the equations in this table. Al arithmetic is done in the interna
floating point format. These conversions apply to conponent data
returned by GL query conmands and to conponents of pixel data returned
to client nmenory. The equations remain the same even if the

i npl enent ed ranges of the G. data types are greater than the m ni num
required ranges. (Refer to table 2.2.) Equations with N as the
exponent are performed for each bitfield of the packed data type,
with N set to the nunber of bits in the bitfield.

37

EXT_packed_pixels NVIDIA OpenGL Extension Specifications

Pl acenent in Cient Menory
G oups of elements are placed in nenory just as they are taken from nmenory
for DrawPi xels. That is, the ith group of the jth row (corresponding to
the ith pixel inthe jth row is placed in nenory nust where the ith group
of the jth row woul d be taken fromfor DrawPi xels. See Unpacki ng under
section 3.6.3. The only difference is that the storage node paraneters
whose nanes begin with PACK are used instead of those whose nanes begin
with UNPACK .
[End of changes to Section 4.3.2]
If this extension is supported, all commands that return pixel data
al so return packed pixel data. These commands are ReadPi xel s,
Cet Texl mage, Cet Hi st ogranmEXT, Get M nmaxEXT, Get Convol utionFilter EXT
CGet Separ abl eFi | t er EXT, and Cet Col or Tabl eSG .

Additions to Chapter 5 of the 1.0 Specification (Special Functions)
None

Additions to Chapter 6 of the 1.0 Specification (State and State Requests)
None

Additions to the GX Specification
None

GLX Protocol
None

Dependenci es on EXT_abgr

If EXT_abgr is not inplenented, then the references to ABGR EXT in this
file are invalid, and should be ignored.

Dependenci es on EXT_t exture3D

If EXT_texture3D is not inplenented, then the references to
TexI mage3DEXT in this file are invalid, and should be ignored.

Dependenci es on EXT_subtexture
I f EXT_subtexture is not inplemented, then the references to
TexSubl magelDEXT, TexSubl mage2DEXT, and TexSubl mage3DEXT in this file
are invalid, and should be ignored.

Dependenci es on EXT_hi st ogram
I f EXT_histogramis not inplenented, then the references to
CGet Hi st ogranEXT and Get M nmaxEXT in this file are invalid, and should be
i gnor ed.

Dependenci es on EXT_convol ution

38

NVIDIA OpenGL Extension Specifications EXT_packed_pixels

I f EXT_convolution is not inplenented, then the references to

Convol uti onFi | ter 1DEXT, Convol uti onFilter2DEXT, Convol uti onFilter 3DEXT,
CGet Convol utionFil ter EXT, Separabl eFilter2DEXT, Separabl eFilter3DEXT, and
Cet Separabl eFilterEXT in this file are invalid, and should be ignored.

Dependenci es on SA _col or_table

If SA _color_table is not inplenented, then the references to
Col or Tabl eSA@ and GetCol orTableSA in this file are invalid, and should
be i gnored.

Dependenci es on SA S_t exture4D

If SA@S texturedD is not inplenmented, then the references to
Texl mage4dDSA S and TexSubl maged4dDSE S in this file are invalid, and should
be i gnored.

Dependenci es on EXT_cnyka

If EXT_cnyka is not inplenmented, then the references to CMYK_EXT and
CMYKA EXT in this file are invalid, and should be ignored.

Errors

[For the purpose of this enuneration of errors, CGenericPixel Function
represents any Open@G. function that accepts or returns pixel data, using
paranmeters <type> and <format> to define the type and format of that
data. Currently these functions are DrawPi xel s, ReadPi xel s, Texl magelD,
Texl mage2D, Get Texl nage, Texl mage3DEXT, TexSubl magelDEXT,

TexSubl mage2DEXT, TexSubl mage3DEXT, GCet Hi st ogr anEXT, Get M nmaxEXT,

Convol uti onFi | ter 1DEXT, Convol uti onFilter2DEXT, Convol uti onFilter 3DEXT,
CGet Convol utionFil ter EXT, Separabl eFilter2DEXT, Separabl eFi |t er 3DEXT,

CGet Separ abl eFi | t er EXT, Col or Tabl eSA, Get Col or Tabl eSE, Texl mage4DSG S,
and TexSubl mage4DSA S. |

| NVALI D_OPERATI ON i s generated by GenericPixel Function if its <type>
paranmeter is UNSIGNED BYTE 3 3 2 EXT and its <fornmat> paraneter does not
specify three conponents. Currently the only 3-conponent format is RGB.

I NVALI D_OPERATI ON i s generated by GenericPixel Function if its <type>
paranmeter is UNSIGNED SHORT 4_4 4 4 EXT, UNS|I GNED SHORT_5_5_5 1 EXT,

UNSI GNED_ | NT_8_8 8 8 EXT, or UNSIGNED |NT_10 10 10 2 EXT and its

<f ormat > paraneter does not specify four conponents. Currently the only
4-conmponent formats are RGBA, ABGR _EXT, and CMYK_EXT.

New St at e
None
New | npl ement ati on Dependent State

None

39

EXT_paletted_texture NVIDIA OpenGL Extension Specifications

Nanme
EXT_paletted_texture
Nane Strings
GL_EXT _pal etted_texture
Ver si on
$Dat e: 1997/06/12 01:07:42 $ $Revision: 1.2 $
Nurnber
78
Dependenci es

GL_EXT pal etted_texture shares routines and enunmerants with

G_SA color_table with the mnor nodification that EXT replaces SA.

In all other ways these calls should function in the sane nanner and the
enuner ant val ues should be identical. The portions of

GL_SA color_table that are used are:

Col or Tabl eSE, Get Col or Tabl eSA@, GCet Col or Tabl eParaneteri vSd ,
Cet Col or Tabl ePar anet erf vSd .

COLOR TABLE FORMAT SGE, COLOR TABLE W DTH Sd,

COLOR TABLE RED SIZE SA, COLOR TABLE GREEN SI ZE Sd

COLOR TABLE BLUE SI ZE SE@, COLOR TABLE ALPHA SI ZE Sd,

COLOR TABLE LUM NANCE SI ZE SE@, COLOR TABLE I NTENSITY_SI ZE Sd .

Portions of GL_SA color _table which are not used in
GL_EXT _paletted_texture are:

CopyCol or Tabl eSE@, Col or Tabl ePar aneteri vSG3 ,

Col or Tabl ePar anet er f vSA .

COLOR_TABLE_SA, POST_CONVOLUTI ON_COLOR TABLE Sd ,
PCST_COLOR_MATRI X_COLOR TABLE _SA, PROXY_COLOR TABLE Sd ,
PROXY_POST_CONVOLUTI ON_COLOR_TABLE_Sd ,

PROXY_POST_COLOR_MATRI X_COLOR TABLE_SGE, COLOR TABLE SCALE_Sd,
COLOR _TABLE BI AS_Sd .

EXT _pal etted_texture can be used in conjunction with EXT_texture3D.
EXT_pal etted_texture nodifies Texl mage3DEXT to accept pal etted i mage
data and all ows TEXTURE 3D EXT and PROXY_TEXTURE 3D EXT to be used a
targets in the color table routines. |If EXT_texture3D is unsupported
then references to 3D texture support in this spec are invalid and
shoul d be ignored.

Overvi ew

EXT _pal etted_texture defines new texture formats and new calls to
support the use of paletted textures in Cpen@G.. A paletted texture is
defined by giving both a palette of colors and a set of inmage data which
is conposed of indices into the palette. The paletted texture cannot
function properly w thout both pieces of information so it increases the
work required to define a texture. This is offset by the fact that the

40

NVIDIA OpenGL Extension Specifications EXT_paletted_texture

overal | anount of texture data can be reduced dramatically by factoring
redundant information out of the |ogical view of the texture and pl aci ng
it in the palette.

Pal etted textures provide several advantages over full-color textures:

* As nmentioned above, the anount of data required to define a

texture can be greatly reduced over what woul d be needed for full-col or
specification. For exanple, consider a source texture that has only 256
distinct colors in a 256 by 256 pixel grid. Full-color representation
requires three bytes per pixel, taking 192K of texture data. By putting
the distinct colors in a palette only eight bits are required per pixel
reduci ng the 192K to 64K plus 768 bytes for the palette. Now add an

al pha channel to the texture. The full-color representation increases
by 64K while the paletted version would only increase by 256 bytes.

This reduction in space required is particularly inportant for hardware
accel erators where texture space is limted.

* Paletted textures allow easy reuse of texture data for inages

which require many simlar but slightly different col ored objects.
Consider a driving simulation with heavy traffic on the road. Many of
the cars will be simlar but with different color schenes. If
full-color textures are used a separate texture would be needed for each
col or scheme, while paletted textures allow the sane basic index data to
be reused for each car, with a different palette to change the fina

col ors.

* Paletted textures also allow use of all the palette tricks

devel oped for paletted displays. Sinple animation can be done, al ong
wi th strobing, glowing and other palette-cycling effects. Al of these
techni ques can enhance the visual richness of a scene with very little
dat a.

New Procedures and Functi ons

voi d Col or Tabl eEXT(
enum t ar get,

enum i nt er nal For mat ,
sizei w dth,
enum f or mat ,
enum t ype,

const void *data);

voi d Col or SubTabl eEXT(
enum t ar get ,

sizei start,

si zei count,
enum f or mat
enum t ype,

const void *data);

voi d Cet Col or Tabl eEXT(
enum t ar get,
enum f or mat ,
enum t ype,

voi d *data);

41

EXT_paletted_texture NVIDIA OpenGL Extension Specifications

voi d Cet Col or Tabl ePar anet er i vEXT(
enum t ar get,

enum pnane,

i nt *parans);

voi d Cet Col or Tabl ePar anet er f vEXT(
enum t ar get,

enum pnane,

fl oat *parans);

New Tokens

Accepted by the internal format parameter of TexlnmagelD, Texl mage2D and
Tex| mage3DEXT:

COLOR_I NDEX1_EXT 0x80E2
COLOR_I NDEX2_EXT 0x80E3
COLOR_I NDEX4_EXT Ox80E4
COLOR_I NDEX8_EXT 0x80ES5
COLOR_I NDEX12_EXT 0x80E6
COLOR_I NDEX16_EXT 0x80E7

Accepted by the pname paraneter of Get Col or Tabl ePar anet eri vVEXT and
Get Col or Tabl ePar anet er f vEXT

COLOR_TABLE_FORVAT EXT 0x80D8
COLOR_TABLE_W DTH_EXT 0x80D9
COLOR_TABLE_RED S| ZE_EXT 0x80DA
COLOR_TABLE_GREEN_SI ZE_EXT 0x80DB
COLOR_TABLE_BLUE_SI ZE_EXT 0x80DC
COLOR_TABLE_ALPHA_SI ZE_EXT 0x80DD
COLOR_TABLE_LUM NANCE_SI ZE_EXT 0x80DE
COLOR_TABLE_| NTENSI TY_SI ZE_EXT 0x80DF

Accepted by the val ue paraneter of GetTexLevel Paraneter{if}v:
TEXTURE_| NDEX_SI ZE_EXT O0x80ED

Additions to Chapter 2 of the G Specification (QpenG Operation)
None
Additions to Chapter 3 of the GL Specification (Rasterization)

Section 3.6.4, 'Pixel Transfer Qperations,' subsection 'Col or |ndex
Lookup, '

Point two is nodified from' The groups will be | oaded as an

image into texture nmenory' to 'The groups will be | oaded as an i nmage
into texture nmenory and the internal format paraneter is not one of the
color index formats fromtable 3.8."

Section 3.8, 'Texturing,' subsection 'Texture Image Specification' is
nodi fied as foll ows:

The portion of the first paragraph discussing interpretation of format,
type and data is split fromthe portion discussing target, width and

hei ght. The target, width and hei ght section now ends with the sentence
"Argunments width and hei ght specify the inmage's wi dth and height.'

42

NVIDIA OpenGL Extension Specifications EXT_paletted_texture

The format, type and data section is noved under a subheader 'Direct

Col or Texture Formats' and begins with '"If internalformat is not one of
the color index formats fromtable 3.8," and continues with the existing
text through the internal format di scussion.

After that section, a new section 'Paletted Texture Formats' has the
text:

If format is given as COLOR INDEX then the inmage data is

conposed of integer values representing indices into a table of colors
rather than colors thenselves. |If internalformat is given as one of the
color index formats fromtable 3.8 then the texture will be stored
internally as indices rather than undergoing index-to-RGBA nappi ng as

woul d previously have occurred. |In this case the only valid values for
type are BYTE, UNSI GNED BYTE, SHORT, UNSI GNED SHORT, | NT and
UNSI GNED_| NT.

The i mage data i s unpacked from nenory exactly as for a

DrawPi xel s conmmand with format of COLOR INDEX for a context in color

i ndex node. The data is then stored in an internal format derived from
internalformat. In this case the only |egal values of internalformat
are COLOR_| NDEX1_EXT, COLOR_| NDEX2_EXT, COLOR_| NDEX4_EXT,

COLOR_| NDEX8_EXT, COLOR | NDEX12_EXT and COLOR_|I NDEX16_EXT and the

i nternal component resolution is picked according to the index

resol ution specified by internalformat. Any excess precision in the
data is silently truncated to fit in the internal component precision.

An application can deternm ne whether a particular

i npl enent ati on supports a particular paletted format (or any paletted
formats at all) by attenpting to use the paletted format with a proxy
target. TEXTURE INDEX SIZE EXT will be zero if the inplenmentation
cannot support the texture as given.

An application can deternm ne an inplenentation's desired

format for a particular paletted texture by making a Texlmage call wth
COLOR_INDEX as the internalformat, in which case target nust be a proxy
target. After the call the application can query

TEXTURE | NTERNAL FORMAT to determ ne what internal fornat the

i npl enent ati on suggests for the texture i mage paraneters.

TEXTURE_| NDEX_SI ZE_EXT can be queried after such a call to determ ne the
suggested i ndex resolution nunerically. The index resolution suggested
by the inplenentation does not have to be as |large as the input data
precision. The resolution may al so be zero if the inplenentation is
unabl e to support any paletted format for the given texture image.

Table 3.8 should be augnented with a colum titled '"Index bits." Al
exi sting formats have zero index bits. The following formats are added
with zeroes in all existing columms:

Nane I ndex bits
COLOR | NDEX1_EXT 1

COLOR | NDEX2_EXT 2

COLOR | NDEX4_EXT 4

COLOR | NDEX8_EXT 8

COLOR | NDEX12_EXT 12

COLOR | NDEX16_EXT 16

43

EXT_paletted_texture NVIDIA OpenGL Extension Specifications

At the end of the discussion of level the follow ng text should be
added:

Al'l m pmapping |l evels share the sane palette. |If levels
are created with different precision indices then their internal formats
will not match and the texture will be inconsistent, as discussed above.

In the discussion of internalformat for CopyTexlmage{12}D, at end of the
sentence specifying that 1, 2, 3 and 4 are illegal there should al so be
a nmention that paletted internal format values are ill egal

At the end of the width, height, format, type and data section under
TexSubl mage there should be an additional sentence:

If the target texture has an col or index internal format
then format may only be COLOR_| NDEX.

At the end of the first paragraph describing TexSubl mage and
CopyTexSubl mage the foll owi ng sentence shoul d be added:

If the target of a CopyTexSublmage is a paletted texture
i mage then | NVALI D_OPERATION i s returned.

After the Alternate |Inmage Specification Conmands section, a new 'Palette
Speci ficati on Commands' section shoul d be added.

Pal etted textures require palette information to
translate indices into full colors. The comand

voi d Col or Tabl eEXT(enum target, enuminternal format, sizei w dth,
enum format, enumtype, const void *data);

is used to specify the format and size of the palette

for paletted textures. target specifies which texture is to have its
pal ette changed and may be one of TEXTURE 1D, TEXTURE_ 2D
PROXY_TEXTURE_1D, PROXY_TEXTURE_2D, TEXTURE_3D EXT or
PROXY_TEXTURE_3D EXT. internal format specifies the desired format and
resolution of the palette when in its internal form internalformat can
be any of the non-index values |egal for Texlnmage internalformat

al t hough i npl enentations are not required to support palettes of al
possi ble formats. w dth controls the size of the palette and nust be a
power of two greater than or equal to one. format and type specify the
nunber of conponents and type of the data given by data. format can be
any of the formats |egal for DrawPi xel s al though inpl enmentati ons are not
required to support all possible formats. type can be any of the types
| egal for DrawPi xels except G._BI TMAP

Data is taken fromnmenory and converted just as if each

palette entry were a single pixel of a 1D texture. Pixel unpacking and
transfer nodes apply just as with texture data. After unpacking and
conversion the data is translated into a internal format that natches
the given format as closely as possible. An inplenentation does not,
however, have a responsibility to support nore than one precision for

t he base fornmats.

If the palette's width is greater than than the range of
the color indices in the texture data then sone of the palettes entries

44

NVIDIA

OpenGL Extension Specifications EXT_paletted_texture

will be unused. |If the palette's width is |less than the range of the
color indices in the texture data then the nost-significant bits of the
texture data are ignored and only the appropriate nunber of bits of the
i ndex are used when accessing the palette.

Speci fying a proxy target causes the proxy texture's

palette to be resized and its paraneters set but no data is transferred
or accessed. |If an inplenentation cannot handle the palette data given
in the call then the color table wi dth and conmponent resolutions are set
to zero.

Portions of the current palette can be replaced with

voi d Col or SubTabl eEXT(enum target, sizei start, sizei count,

enum format, enumtype, const void *data);

target can be any of the non-proxy values |egal for

Col or Tabl eEXT. start and count control which entries of the palette are
changed out of the range allowed by the internal format used for the
palette indices. count is silently clanped so that all nodified entries
all within the legal range. format and type can be any of the val ues

| egal for Col orTabl eEXT. The data is treated as a 1D texture just as in
Col or Tabl eEXT.

In the 'Texture State and Proxy State' section the sentence fragment
begi nning 'six integer values describing the resolutions...' should be
changed to refer to seven integer values, with the seventh being the

i ndex resol ution.

Pal ette data should be added in as a third category of texture state.

Af

Th
pr

Th
th

Addi ti
and th

None
Addi ti

None

ter the discussion of properties, the follow ng should be added:

Next there is the texture palette. Al textures have a

palette, even if their internal format is not color index. A texture's
palette is initially one RGBA elenent with all four conponents set to
1.0.

e sentence nentioning that proxies do not have image data or
operties should be extended with 'or palettes.'

e sentence beginning 'If the texture array is too |large' describing
e effects of proxy failure should change to read:

If the inplenmentation is unable to handle the texture

i mage data the proxy wi dth, height, border w dth and conponent
resolutions are set to zero. This situation can occur when the texture
array is too large or an unsupported paletted format was requested.

ons to Chapter 4 of the GL Specification (Per-Fragment Operations
e Framebuffer)

ons to Chapter 5 of the GL Specification (Special Functions)

45

EXT_paletted_texture NVIDIA OpenGL Extension Specifications

Additions to Chapter 6 of the GL Specification (State and State
Request s)

In the section on CetTexl mage, the sentence saying ' The conponents are
assigned ambng R, G B and A according to' should be changed to be

If the internal format of the texture is not a color

i ndex format then the conponents are assigned anong RR, G B, and A
according to Table 6.1. Specifying COLOR INDEX for format in this case
will generate the error INVALID ENUM If the internal format of the
texture is color index then the conponents are handled in one of two
ways depending on the value of format. |If format is not COLOR_|I NDEX,
the texture's indices are passed through the texture's palette and the
resulting conponents are assigned anong R, G B, and A according to
Table 6.1. If format is COLOR INDEX then the data is treated as single
conmponents and the palette indices are returned. Conponents are taken
starting. ..

Fol | owi ng the CGet Texl mage section there should be a new section
CGet Col or Tabl eEXT is used to get the current texture palette.
voi d Cet Col or Tabl eEXT(enum target, enum format, enumtype, void *data);

CGet Col or Tabl eEXT retrieves the texture palette of the

texture given by target. target can be any of the non-proxy targets
valid for Col orTabl eEXT. format and type are interpreted just as for
Col or Tabl eEXT. Al textures have a palette by default so

CGet Col or Tabl eEXT wil | always be able to return data even if the interna
format of the texture is not a color index format.

Pal ette paraneters can be retrieved using

voi d Cet Col or Tabl ePar anet eri vEXT(enum target, enum pnane, int *parans);
voi d Cet Col or Tabl ePar anet er f vEXT(enum t arget, enum pnane, float *parans);

target specifies the texture being queried and pnane
controls which paraneter value is returned. Data is returned in the
menory pointed to by parans.

Queryi ng COLOR_TABLE_FORVAT_EXT returns the internal

format requested by the nost recent Col or Tabl eEXT call or the default.
COLOR _TABLE W DTH EXT returns the width of the current palette
COLOR_TABLE_RED SI ZE EXT, COLOR TABLE_GREEN S| ZE_EXT,

COLOR_TABLE BLUE_SI ZE_EXT and COLOR_TABLE_ALPHA Sl ZE EXT return the
actual size of the conmponents used to store the palette data internally,
not the size requested when the palette was defined.

Table 6.11, "Texture Cbjects" should have a |ine appended for
TEXTURE_| NDEX_SI ZE_EXT

TEXTURE_I NDEX_SI ZE_ EXT n x Z+ GetTexLevel Paraneter 0 xD texture inmage i's index resolution 3.8 -

46

NVIDIA OpenGL Extension Specifications EXT_paletted_texture

Revi sion History
Oiginal draft, revision 0.5, Decenber 20, 1995 (drewb) Created

M nor revisions and clarifications, revision 0.6, January 2, 1996 (drewb)
Repl aced all request-for-coment blocks with final text
based on inpl enentati on.

M nor revisions and clarifications, revision 0.7, Feburary 5, 1996 (drewb)
Specified the state of the palette color information
when existing data is replaced by new dat a.

Clarified behavior of TexPal ette on inconsistent textures.

Maj or changes due to ARB review, revision 0.8, March 1, 1996 (drewb)
Swi tched from using TexPal ett eEXT and Get TexPal ett eEXT
to using SA's Col or Tabl eEXT routi nes. Added Col or SubTabl eEXT so
equi valent functionality is avail able.

Al owed proxies in all targets.

Changed PALETTE?_ EXT val ues to COLOR | NDEX?_EXT. Added

support for one and two bit palettes. Renoved PALETTE | NDEX EXT in
favor of COLOR_| NDEX.

Decoupl ed palette size fromtexture data type. Palette
size is controlled only by Col or Tabl eEXT.

Changes due to ARB review, revision 1.0, My 23, 1997 (drewb)
Ment i oned texture3D.

Def i ned TEXTURE_| NDEX_SI ZE_EXT.

Al l owed inpl enentations to return an index size of zero to indicate
no support for a particular format.

Al'l oned usage of GL_COLOR I NDEX as a generic format in
proxy queries for determ ning an optimal index size for a particular
texture.

Di sal | owed CopyTexl mage and CopyTexSubl mage to pal etted
formats.

Del eted nmention of index transfer operations during GetTexlmge with
pal etted formats.

47

EXT_point_parameters NVIDIA OpenGL Extension Specifications

Nanme
EXT_poi nt _paraneters

Nane Strings
GL_EXT_poi nt _paraneters

Ver si on
$Dat e: 1997/08/21 21:26:36 $ $Revision: 1.6 $

Nurnber
54

Dependenci es
SA@S multisanple affects the definition of this extension

Overvi ew
Thi s extension supports additional geometric characteristics of points. It
can be used to render particles or tiny light sources, commonly referred
as "Light points".
The raster brightness of a point is a function of the point area, point
color, point transparency, and the response of the display's electron gun
and phosphor. The point area and the point transparency are derived fromthe
poi nt size, currently provided with the <size> paraneter of gl PointSize.
The primary nmotivation is to allow the size of a point to be affected by
di stance attenuation. \Wen distance attenuation has an effect, the fina
poi nt size decreases as the distance of the point fromthe eye increases.
The secondary notivation is a nean to control the mapping fromthe point
size to the raster point area and point transparency. This is done in order
to increase the dynam c range of the raster brightness of points. In other
words, the al pha conponent of a point may be decreased (and its transparency
i ncreased) as its area shrinks bel ow a defined threshol d.
This extension defines a derived point size to be closely related to point
bri ght ness. The brightness of a point is given by:
dist_atten(d) = -------------------

a+b*d+c* d2

bri ght ness(Pe) = Brightness * dist_atten(|Pe|)
where "Pe' is the point in eye coordinates, and 'Brightness' is some initial
val ue proportional to the square of the size provided with gl PointSize. Here

we sinplify the raster brightness to be a function of the rasterized point
area and poi nt transparency.

48

NVIDIA OpenGL Extension Specifications EXT_point_parameters

bri ght ness(Pe) bri ght ness(Pe) >= Threshol d_Area
area(Pe) =
Threshol d_Area Q herwi se
factor(Pe) = brightness(Pe)/ Threshol d_Area
al pha(Pe) = Al pha * factor(Pe)
where ' Al pha' cones with the point color (possibly nodified by Iighting).

" Threshol d_Area' above is in area units. Thus, it is proportional to the
square of the threshold provided by the programrer through this extension

The new point size derivation nethod applies to all points, while the
threshol d applies to multisanple points only.

| ssues
* Does poi nt al pha nodi fication affect the current color ?
No.
* Do we need a special function gl Get Poi nt Par anet er f vEXT, or

get by with gl GetFl oat ?
No.

* If alpha is 0, then we could toss the point before it reaches the
fragment stage.

No. This can be achieved with enabling the al pha test with reference of
0 and function of LEQUAL

* Do we need a disable for applying the threshold ?

The default threshold value is 1.0. It is applied even if the point size
is constant.

If the default threshold is not overriden, the area of nultisanple
points with provided constant size of less than 1.0, is mapped to 1.0,
whi | e the al pha conponent is nodul ated accordingly, to conpensate for
the larger area. For nultisanple points this is not a problem as there
are no rel evant applications yet. As nentioned above, the threshold does
not apply to alias or antialias points.

The alternative is to have a disable of threshold application, and state
that threshold (if not disabled) applies to non antialias points only
(that is, alias and nultisanple points).

The behavi or without an enabl e/ di sabl e | ooks fi ne.

* Future extensions (to the extension)

1. GL_PO NT_FADE_ALPHA CLAWP_EXT

VWhen the derived point size is larger than the threshold size defined by
the G__PAO NT_FADE_THRESHOLD SI ZE EXT paraneter, it might be desired to

49

EXT_point_parameters NVIDIA OpenGL Extension Specifications

New

Addi

Addi

clanp the conputed al pha to a m nimumvalue, in order to keep the point
visible. In this case the fornula bel ow change:

factor = (derived_size/threshol d)~2

factor clanmp <= factor
cl anped_val ue =
cl anmp factor < clanp
1.0 derived _size >= threshold
al pha *=
cl anped_val ue O herw se

where clanmp is defined by the G._PO NT_FADE ALPHA CLAMP_EXT new par aneter.
Procedures and Functi ons

voi d gl Poi nt Paraneterf EXT (GLenum pnane, G.fl oat param);
voi d gl Poi nt Paraneterf vEXT (GL.enum pnane, G.float *paramns);

Tokens

Accepted by the <pname> paraneter of gl PointParaneterfEXT, and the <pname>
of gl Get:

GL_PO NT_SI ZE_ M N_EXT
GL_PO NT_SI ZE_MAX_EXT
GL_PO NT_FADE_THRESHOLD S| ZE_EXT

Accepted by the <pname> paraneter of gl PointParaneterfvEXT, and the <pnane>
of gl Get:

G__PO NT_SI ZE_M N_EXT 0x8126

G__PO NT_SI ZE_NVAX_EXT 0x8127

G__PO NT_FADE_THRESHOLD_SI ZE_ EXT 0x8128

GL_DI STANCE_ATTENUATI ON_EXT 0x8129

tions to Chapter 2 of the 1.0 Specification (OpenG Operation)
None

tions to Chapter 3 of the 1.0 Specification (Rasterization)

Al'l paraneters of the gl Poi nt Paranet erf EXT and gl Poi nt Par anet er f vEXT
functions set various values applied to point rendering. The derived point
size is defined to be the <size> provided with gl PointSize nodul ated with a
di stance attenuation factor

The paraneters GL_PO NT_SIZE M N EXT and G._PQO NT_SI ZE MAX_EXT si nmply
define an upper and | ower bounds respectively on the derived point size.

The above paraneters affect non nultisanple points as well as multisanple
points, while the G._PO NT_FADE THRESHOLD S| ZE EXT paraneter, has no effect
on non nultisanple points. If the derived point size is larger than

the threshol d size defined by the G._PO NT_FADE THRESHOLD SI ZE EXT
paranmeter, the derived point size is used as the dianeter of the rasterized
point, and the al pha conponent is intact. Oherwi se, the threshold size is

50

NVIDIA OpenGL Extension Specifications EXT_point_parameters

Addi
and

Addi

Addi

set to be the dianeter of the rasterized point, while the al pha conponent is
nmodul at ed accordingly, to conpensate for the |larger area

The di stance attenuation function coefficients, nanely a, b, and c in:
dist_atten(d) = -------------------
a+b*d+c* d2

are defined by the <pname> parameter G._DI STANCE ATTENUATI ON_EXT of the
function gl Poi nt ParameterfvEXT. By default a =1, b =0, and ¢ = 0.

Let 'size' be the point size provided with gl PointSize, Ilet '"dist' be the
di stance of the point fromthe eye, and let '"threshold be the threshold
size defined by the G._PO NT_FADE THRESHOLD SI ZE par anet er of
gl Poi nt Par anmet er f EXT. The derived point size is given by:
derived_size = size * sqrt(dist_atten(dist))
Note that when default values are used, the above fornula reduces to
derived_size = size
the diameter of the rasterized point is given by:
derived_si ze derived _size >= threshold
di aneter =
t hreshol d O herw se
The al pha of a point is calculated to allow the fading of points instead of
shrinking them past a defined threshold size. The al pha conponent of the
rasterized point is given by:
1 derived _size >= threshold
al pha *=
(derived_size/threshol d)~2 O herw se

The threshol d defined by G._PO NT_FADE THRESHOLD SIZE EXT is not cl anped
to the m ni num and naxi mum poi nt sizes.

Points do not affect the current col or
Thi s extension doesn't change the feedback or selection behavior of points.

tions to Chapter 4 of the 1.0 Specification (Per-Fragnent Operations

t he Framebuffer)

None

tions to Chapter 5 of the 1.0 Specification (Special Functions)

None

tions to Chapter 6 of the 1.0 Specification (State and State Requests)

None

51

EXT_point_parameters NVIDIA OpenGL Extension Specifications

Additions to the GX Specification
None
Dependencies on SA S nul tisanple

If S@S nultisanple is not inplenmented, then the references to
mul ti sanpl e points are invalid, and should be ignored.

Errors

I NVALID ENUM i s generated i f Poi nt Paramnet erf EXT paraneter <pname> i s not
GL_PAO NT_SI ZE_M N_EXT, GL_PO NT_SI ZE_MAX_EXT, or
GL_PO NT_FADE_THRESHOLD S| ZE_EXT.

I NVALID ENUM i s generated if Poi nt Paranet erf vEXT paraneter <pnanme> is
not GL_PO NT_SIZE_ M N _EXT, G._PO NT_SI ZE_MAX_EXT,
GL_PO NT_FADE_THRESHOLD Sl ZE_EXT, or GL._DI STANCE_ATTENUATI ON_EXT

I NVALI D_VALUE i s generated when val ues are out of range according to:

<pnane> valid range
G__PO NT_SI ZE_M N_EXT >= 0
G__PO NT_SI ZE_NVAX_EXT >= 0
G__PO NT_FADE_THRESHOLD_SI ZE_EXT >= 0

| ssues

- shoul d we generate | NVALI D VALUE or just clanp?

New St at e

Initial
Get Val ue Get Command Type Val ue Attribute
G__PO NT_SI ZE_M N_EXT Get Fl oat v R 0 poi nt
G__PO NT_SI ZE_NVAX_EXT Get Fl oat v R M poi nt
G._PO NT_FADE_THRESHOLD_SI ZE_EXT Cet Fl oatv R 1 poi nt
GL_DI STANCE_ATTENUATI ON_EXT Get Fl oat v 3xR (1,0,0) poi nt

Mis the |l argest avail abl e point size.

New | npl ement ati on Dependent State
None

Backwar ds Conpatibility
Thi s extension replaces SE@ S point_paraneters. The procedures, tokens,
and name strings now refer to EXT instead of SG@S. Enunerant val ues are

unchanged. SA i nplenentations which previously provided this
functionality should support both forns of the extension.

52

NVID

Name

Name

Vers

Nunb

Depe

Over

Addi

IA OpenGL Extension Specifications EXT_rescale_normal

EXT rescal e_nor nal

Strings

GL_EXT rescal e_nor nal

i on
$Dat e: 1997/07/02 23:38:17 $ $Revision: 1.7 $

er

27

ndenci es

None
Vi ew
VWhen normal rescaling is enabled a new operation is added to the
transformati on of the normal vector into eye coordi nates. The nornmal vector
is rescaled after it is multiplied by the inverse nodel view matri x and
before it is normalized.
The rescale factor is chosen so that in nmany cases normal vectors with unit
length in object coordinates will not need to be normalized as they
are transforned into eye coordinates.

Procedures and Functi ons

None
Tokens
Accepted by the <cap> paraneter of Enable, D sable, and |IsEnabled,
and by the <pnanme> paraneter of GCetBool eanv, Cetlntegerv, CetFl oatv,
and Get Doubl ev:

RESCALE_NORMAL_EXT 0x803A

tions to Chapter 2 of the 1.1 Specification (OpenG Operation)
Section 2.10.3

Finally, we consider how the Model View transformati on state affects
normals. Normals are of interest only in eye coordinates, so the rules
governing their transformation to other coordi nate systens are not
exani ned.

Nor mal s which have unit |ength when sent to the G, have their length
changed by the inverse of the scaling factor after transformation by

t he nodel -view i nverse matrix when the nodel -view matri x represents
a uniformscale. If rescaling is enabled, then normals specified with

53

EXT_rescale_normal NVIDIA OpenGL Extension Specifications

the Normal command are rescal ed after transformati on by the Model Vi ew
I nver se.

Normal s sent to the GL may or may not have unit length. In addition
the length of the normals after transformation mght be altered due
to transformation by the nodel -view inverse matrix. |If normalization
i s enabl ed, then normals specified with the Normal 3 conmand are
normal i zed after transformation by the nodel -view i nverse matrix and
after rescaling if rescaling is enabled. Normalization and rescaling
are controlled with

voi d Enabl e(enum target);
and
voi d Di sable(enumtarget);

with target equal to NORMALI ZE or RESCALE NORMAL. This requires two
bits of state. The initial state is for normals not to be nornmalized or
rescal ed.

Therefore, if the nodelview matrix is M then the transforned pl ane equation
is

(nx" ny nz q) =((nxnynzaq * (M-1)),

the rescaled normal is

(n_x" n_y" n_z") =1f * (n_x" n.y n_z'),
and the fully transforned normal is

1 (n_x")
(n_y") (2.1)
z")

V (n_x")"2 + (n_y")"2 + (n_z")"2

If rescaling is disabled then f is 1, otherwise f is conputed
as follows:

Let mij denote the matrix elenment in rowi and colum j of M-1,
nunbering the topnost row of the matrix as row 1, and the | eftnost
colum as colum 1. Then

V (m31)"2 + (m32)"2 + (m33)"2

Al ternatively, an inplenentation ny chose to normalize the normal
i nstead of rescaling the normal. Then

54

NVIDIA OpenGL Extension Specifications EXT_rescale_normal

V (n_x'")"2 + (n_y')"2 + (n_z')"2

If normalization is disabled, then the square root in equation 2.1 is
replaced with 1, otherw se .

Additions to Chapter 3 of the 1.1 Specification (Rasterization)
None

Additions to Chapter 4 of the 1.1 Specification (Per-Fragnment Operations and
t he Framebuffer)

None

Additions to Chapter 5 of the 1.1 Specification (Special Functions)
None

Additions to Chapter 6 of the 1.1 Specification (State and State Requests)
None

Additions to the GX Specification
None

GLX Protocol
None

Errors
None

New St at e

Get Val ue Get Command Type Initial Value Attribute

RESCALE NORVAL EXT | sEnabl ed B FALSE transforni enabl e

New | npl ement ati on Dependent State

None

55

EXT_secondary_color NVIDIA OpenGL Extension Specifications

Nanme
EXT_secondary_col or

Nane Strings
GL_EXT_secondary_col or

Ver si on
$Dat e: 1999/ 06/ 21 19:57:47 $ $Revision: 1.8 $

Nurnber
145

Dependenci es
Ei t her EXT_separate_specul ar_color or OpenG 1.2 is required, to specify
the "Col or Sum' stage and other handling of the secondary color. This is
witten against the 1.2 specification (available from ww. opengl.org).

Overvi ew
This extension allows specifying the RGB conponents of the secondary
color used in the Color Sum stage, instead of using the default
(0,0,0,0) color. It applies only in RGBA node and when LIGHTING is
di sabl ed.

| ssues

* Can we use the secondary al pha as an explicit fog weighting factor?

| SVs prefer a separate interface (see G._EXT fog_coord). The current
interface specifies only the RGB el enents, |eaving the option of a
separ ate extension for SecondaryCol or4() entry points open (thus
the apparently usel ess ARRAY_SI ZE state entry).
There is an unpl easant asymetry with Color3() - one assumes A =
1.0, the other assunmes A = 0.0 - but this appears unavoi dabl e gi ven
the 1.2 color sumspecification | anguage. Alternatively, the col or

sum | anguage could be rewitten to not sum secondary A

* What about multiple "color iterators"™ for use w th aggrandi zed
mul titexture inplenentations?

We may need this eventually, but the secondary color is well defined
and a nore generic interface doesn't seemjustified now

* Interl eaved array formats?
No. The multiplicative explosion of formats is too great.

* Do we want to be able to query the secondary col or val ue? How does it
interact with lighting?

The secondary color is not part of the GL state in the

56

NVIDIA OpenGL Extension Specifications EXT_secondary_color

separ at e_specul ar_col or extension that went into Qpen@ 1.2. There,
it can't be queried or obtained via feedback

The secondary_col or extension is slightly nore general - purpose, so
the secondary color is explicitly in the G. state and can be queried
- but it's still sonmewhat limted and can't be obtained via

f eedback, for exanple.

New Procedures and Functi ons

voi d SecondaryCol or 3[bsi fd ubusui] EXT(T conponent s)

voi d SecondaryCol or 3[bsi fd ubusui] VEXT(T components)

voi d Secondar yCol or Poi nter EXT(i nt size, enumtype, sizei stride,
voi d *pointer)

New Tokens
Accepted by the <cap> paraneter of Enable, D sable, and |IsEnabled,
and by the <pnanme> paraneter of GCetBool eanv, Cetlntegerv, CetFl oatv,
and Get Doubl ev:
COLOR_SUM EXT 0x8458

Accepted by the <pnanme> paraneter of GetBool eanv, Getlntegerv,
Get Fl oat v, and Get Doubl ev:

CURRENT _SECONDARY_COLOR_EXT 0x8459
SECONDARY_COLOR_ARRAY_SI ZE_EXT 0Xx845A
SECONDARY_COLOR_ARRAY TYPE_EXT 0x845B
SECONDARY_COLOR_ARRAY_STRI DE_EXT 0x845C

Accepted by the <pnane> paraneter of GetPointerv:
SECONDARY_COLOR_ARRAY_PA NTER_EXT 0x845D

Accepted by the <array> paraneter of EnabledientState and
Di sabl eCl i ent St at e:

SECONDARY_COLOR_ARRAY_EXT 0x845E
Additions to Chapter 2 of the 1.2 Draft Specification (OpenG Operation)

These changes describe a new current state type, the secondary color, and
the conmands to specify it:

- (2.6, p. 12) Second paragraph changed to:
"Each vertex is specified with two, three, or four coordinates. In
addition, a current normal, current texture coordinates, current
color, and current secondary col or may be used in processing each
vertex."
Third paragraph, second sentence changed to:
"These associated colors are either based on the current color and

current secondary color, or produced by l|ighting, depending on
whet her or not lighting is enabled.™

57

EXT_secondary_color NVIDIA OpenGL Extension Specifications

- 2.6.3, p. 19) First paragraph changed to

"The only G. commands that are allowed wthin any Begin/End pairs
are the commands for specifying vertex coordinates, vertex colors,
normal coordi nates, and texture coordi nates (Vertex, Color
Secondar yCol or EXT, |ndex, Normal, TexCoord)..."

- (2.7, p. 20) Starting with the fourth paragraph, change to:

"Finally, there are several ways to set the current col or and
secondary color. The GL stores a current single-valued col or index
as well as a current four-val ued RGBA col or and secondary col or

Ei ther the index or the color and secondary col or are significant
depending as the GL is in color index node or RGBA node. The node
selection is nmade when the GL is initialized.

The conmands to set RGBA colors and secondary colors are:

voi d Col or[34][bsifd ubusui] (T conmponents)
voi d Col or[34][bsifd ubusui]v(T conponents)
voi d SecondaryCol or 3[bsi fd ubusui] EXT(T conponent s)
voi d SecondaryCol or 3[bsi fd ubusui] VEXT(T comnponents)

The col or command has two major variants: Color3 and Col or4. The
four value versions set all four values. The three val ue versions
set R G and B to the provided values; Ais set to 1.0. (The
conversion of integer color conponents (R, G B, and A) to
floating-point values is discussed in section 2.13.)

The secondary col or conmand has only the three val ue versions.
Secondary A is always set to 0.0.

Versions of the Col or and SecondaryCol or EXT commands t hat take
fl oati ng-poi nt val ues accept val ues nonminally between 0.0 and
1.0...."

The | ast paragraph is changed to read:

"The state required to support vertex specification consists of four
floating-point nunbers to store the current texture coordi nates s,
t, r, and g, four floating-point values to store the current RGBA
color, four floating-point values to store the current RGBA
secondary col or, and one floating-point value to store the current
color index. There is no notion of a current vertex, so no state is
devoted to vertex coordinates. The initial values of s, t, and r of
the current texture coordinates are zero; the initial value of qis
one. The initial current normal has coordinates (0,0,1). The initial
RGBA color is (RGB/A) =(1,1,1,1). The initial RGBA secondary
color is (RGB,A =(0,0,0,0). The initial color index is 1."

- (2.8, p. 21) Added secondary color command for vertex arrays:
Change first paragraph to read:

"The vertex specification commands described in section 2.7 accept
data in alnmost any format, but their use requires many comrand

58

NVIDIA OpenGL Extension Specifications EXT_secondary_color

executions to specify even sinple geonetry. Vertex data may al so be
placed into arrays that are stored in the client's address space.

Bl ocks of data in these arrays may then be used to specify nultiple
geonetric primtives through the execution of a single G. comrand.
The client may specify up to seven arrays: one each to store edge
flags, texture coordi nates, colors, secondary colors, color indices,
normal s, and vertices. The conmmands”

Add to functions listed followi ng first paragraph

voi d Secondar yCol or Poi nter EXT(i nt size, enumtype, sizei stride,
voi d *pointer)

Add to table 2.4 (p. 22):

Command Si zes Types
Secondar yCol or Poi nt er EXT 3,4 byt e, ubyt e, short, ushort,
int,uint,float,double

Starting with the second paragraph on p. 23, change to add
SECONDARY_COLOR_ARRAY_EXT

"An individual array is enabled or disabled by calling one of

voi d Enabl eCl i ent St at e(enum arr ay)
voi d Di sabl ed i ent St at e(enum arr ay)

with array set to EDGE_FLAG ARRAY, TEXTURE_COORD ARRAY, COLOR ARRAY,
SECONDARY_COLOR_ARRAY_EXT, | NDEX_ARRAY, NORVAL_ARRAY, or
VERTEX_ARRAY, for the edge flag, texture coordi nate, color
secondary color, color index, normal, or vertex array, respectively.

The ith el enent of every enabled array is transferred to the G by
calling

void ArrayEl enent (int i)

For each enabled array, it is as though the correspondi ng conmand
fromsection 2.7 or section 2.6.2 were called with a pointer to
element i. For the vertex array, the corresponding command is

Vert ex<si ze><type>v, where <size> is one of [2,3,4], and <type> is
one of [s,i,f,d], corresponding to array types short, int, float,
and doubl e respectively. The correspondi ng commands for the edge
flag, texture coordinate, color, secondary color, color index, and
normal arrays are EdgeFl agv, TexCoord<si ze><type>v,

Col or <si ze><t ype>v, SecondaryCol or 3<t ype>VEXT, | ndex<type>v, and
Nor mal <t ype>v, respectively..."

Change pseudocode on p. 27 to disable secondary color array for
canned interleaved array formats. After the lines

Di sabl ed i ent St at e(EDGE_FLAG_ARRAY) ;
Di sabl ed i ent St at e(| NDEX_ARRAY) ;

insert the |line

59

EXT_secondary_color NVIDIA OpenGL Extension Specifications

Di sabl ed i ent St at e(SECONDARY_COLOR_ARRAY_EXT) ;

Substitute "seven" for every occurence of "six

on p. 27.

in the final paragraph

- (2.12, p. 41) Add secondary color to the current rasterpos state.
Change the | ast paragraph to read

"The current raster position requires five single-precision
floating-point values for its x_ w, y_ w, and z_w wi ndow coordi nat es,
its wec clip coordinate, and its eye coordinate di stance, a single
valid bit, a color (RGBA color, RGBA secondary col or, and col or

i ndex), and texture coordi nates for associated data. In the initial
state, the coordinates and texture coordi nates are both $(0,0,0,1)8$,
the eye coordinate distance is O, the valid bit is set, the
associated RGBA color is $(1,1,1,1)%, the associated RGBA secondary
color is $(0,0,0,0)%, and the associated color index color is 1. In
RGBA node, the associated color index always has its initial val ue;
in color index node, the RGBA col or and and secondary col or al ways
maintain their initial values."

- (2.13, p. 43) Change second paragraph to acknow edge two col ors when
lighting is disabled:

"Next, lighting, if enabled, produces either a color index or
primary and secondary colors. If lighting is disabled, the current
color index or current color (primary color) and current secondary
color are used in further processing. After lighting, RGBA colors
are clanped..."

- (Figure 2.8, p. 42) Change to show primary and secondary RGBA colors in
both I'it and unlit paths.

- (2.13.1, p. 44) Change so that the second paragraph starts:
"Lighting may be in one of two states:
1. Lighting Of. In this state, the current color and current secondary
color are assigned to the vertex primary color and vertex secondary
col or, respectively.
2. ...

- (2.13.1, p. 48) Change the sentence follow ng equation 2.5 (for spot_i)
so that color sumis inplicitly enabl ed when SEPARATE _SPECULAR COLOR i s
set:

"Al'l conputations are carried out in eye coordinates. Wen c_es =

SEPARATE _SPECULAR COLOR, it is as if color sum (see section 3.9) were
enabl ed, regardl ess of the value of COLOR SUM EXT."

- (3.9, p. 136) Change the first paragraph to read

60

NVIDIA OpenGL Extension Specifications EXT_secondary_color

"After texturing, a fragnment has two RGBA colors: a primary color c_pri
(which texturing, if enabled, may have nodified) and a secondary col or
c_sec.

If color sumis enabled, the conponents of these two colors are sunmed
to produce a single post-texturing RGBA color ¢ (the A conmponent of the
secondary color is always 0). The conmponents of c are then clanped to
the range [0,1]. If color sumis disabled, then c_pri is assigned to the
post texturing color. Color sumis enabled or disabled using the generic
Enabl e and Di sabl e commands, respectively, with the synbolic constant
COLOR_SUM EXT.

The state required is a single bit indicating whether color sumis
enabl ed or disabled. In the initial state, color sumis disabled.™

Additions to Chapter 6 of the 1.2 Specification (State and State Requests)
None

Additions to the GX Specification
None

G.X Protocol

Ei ght new G renderi ng commands are added. The fol |l owi ng commands
are sent to the server as part of a gl XRender request:

Secondar yCol or 3bvEXT

2 8 renderi ng command | ength

2 4126 renderi ng command opcode

1 | NT8 v[0]

1 | NT8 v[1]

1 | NT8 v[2]

1 unused
Secondar yCol or 3svEXT

2 12 renderi ng command | ength

2 4127 renderi ng command opcode

2 | NT16 v[0]

2 | NT16 v[1]

2 | NT16 v[2]

2 unused
Secondar yCol or 3i vEXT

2 16 renderi ng command | ength

2 4128 renderi ng command opcode

4 | NT32 v[0]

4 | NT32 v[1]

4 | NT32 v[2]
Secondar yCol or 3f vEXT

2 16 renderi ng command | ength

2 4129 renderi ng command opcode

4 FLOAT32 v[0]

4 FLOAT32 v[1]

4 FLOAT32 v[2]

61

EXT_secondary_color NVIDIA OpenGL Extension Specifications

Secondar yCol or 3dvEXT

2 28 renderi ng command | ength

2 4130 renderi ng command opcode

8 FLOAT64 v[0]

8 FLOAT64 v[1]

8 FLOAT64 v[2]
Secondar yCol or 3ubvEXT

2 8 renderi ng command | ength

2 4131 renderi ng command opcode

1 CARD8 v[0]

1 CARD8 v[1]

1 CARD8 v[2]

1 unused
Secondar yCol or 3usvEXT

2 12 renderi ng command | ength

2 4132 renderi ng command opcode

2 CARD16 v[0]

2 CARD16 v[1]

2 CARD16 v[2]

2 unused
Secondar yCol or 3ui VEXT

2 16 renderi ng command | ength

2 4133 renderi ng command opcode

4 CARD32 v[0]

4 CARD32 v[1]

4 CARD32 v[2]

Errors

I NVALI D VALUE is generated if SecondaryCol or Poi nt er EXT paraneter <size>
is not 3.

I NVALID ENUM i s generated i f SecondaryCol or Poi nt er EXT paraneter <type>
is not BYTE, UNSIGNED BYTE, SHORT, UNSI GNED SHORT, | NT, UNSI GNED | NT,
FLOAT, or DOUBLE.

I NVALI D_ VALUE is generated if SecondaryCol or Poi nt er EXT par amnet er
<stride> is negative.

62

NVIDIA OpenGL Extension Specifications EXT_secondary_color

New St at e

(table 6.5, p. 195)

Get Val ue Type Get Command Initial Value Description Sec Attribute

CURRENT_SECONDARY_COLOR_EXT C Get | nt egerv, (0,0,0,0) Current 2.7 current
Get Fl oat v secondary col or

(table 6.6, p. 197)

Initial
Gt Val ue Type Gt Gormand Val ue Description Sec Attribute
SEOONDARY O (R ARRAY_EXT B | sEnabl ed Fal se Sec. color array enabl e 2.8 vertex-array
SEQOONDARY_ GO.R ARRAY S ZE EXT 7+ Getintegerv 3 Sec. colors per vertex 2.8 vertex-array
SEQONDARY_ GOL.CR ARRAY_TYPE EXT Z8 GetIntegerv HA.OAT Type of sec. col or conponents 2.8 vertex-array
SFONDARY AR ARRAY STRCE EXT Z+ Getintegerv O Sride between sec. colors 2.8 vertex-array
SEFOONDARY QO (R ARRAY FONTER EXT Y GtPointerv O Pointer to the sec. color array 2.8 vertex-array
(table 6.8, p. 198)
Get Val ue Type Get Command Initial Value Description Sec Attribute
COLOR_SUM _EXT B | sEnabl ed Fal se True if color 3.9 fog/enable

sum enabl ed

63

EXT_separate_specular_color NVIDIA OpenGL Extension Specifications

Nanme
EXT_separ at e_specul ar _col or
Nane Strings
GL_EXT_separ at e_specul ar _col or
Ver si on
$Dat e: 1997/10/05 00:16:23 $ $Revision: 1.3 $
Nurnber
144
Dependenci es
None
Overvi ew

Thi s extension adds a second color to rasterization when lighting is
enabled. Its purpose is to produce textured objects with specul ar

hi ghli ghts which are the color of the lights. It applies only to
rgba Iighting.

The two colors are conputed at the vertexes. They are both cl anped,
fl at-shaded, clipped, and converted to fixed-point just like the
current rgba color (see Figure 2.8). Rasterization interpolates
both colors to fragnments. |If texture is enabled, the first (or
primary) color is the input to the texture environnment; the fragnment
color is the sumof the second color and the color resulting from
texture application. |If texture is not enabled, the fragnment col or
is the sumof the two colors.

A new control to LightMdel*, LIGHT_MODEL_CCOLOR _CONTROL_EXT, manages
the values of the two colors. It takes values: SINGLE COLOR EXT, a
conpati bility node, and SEPARATE SPECULAR COLCOR EXT, the object of
this extension. 1In single color node, the primary color is the
current final color and the secondary color is 0.0. |In separate
specul ar node, the primary color is the sumof the anbient, diffuse,
and em ssive terns of final color and the secondary color is the
specul ar term

There is nmuch concern that this extension may not be conpatible with
the future direction of Open@ with regards to better |ighting and
shadi ng nodels. Until those inpacts are resol ved, serious
consi derati on shoul d be given before adding to the interface
specified herein (for exanple, allowi ng the user to specify a
second i nput color).

| ssues
* Where is em ssive included?

RESOLVED - Emi ssive is included with the anbient and diffuse

64

NVIDIA OpenGL Extension Specifications EXT_separate_specular_color

ternms. G ouping emssive with specular (the "proper"” thing) could
be inplemented with a new value for the col or control

* Should there be two colors when not lighting or with index
[ighting?

RESOLVED - The answer is probably yes--there should be two colors
when lighting is disabled and there could be an incorporation of
two colors with index lighting; but these are beyond the scope of
this extension. Further, attenpts to acconplish these may not be
conpatible with the future direction of OpenG with respect to
high quality lighting and shadi ng nodel s.
* What happens when texture is disabled?
RESOLVED - The extension specifies to add the two col ors when
texture is disabled. This is conpatible with the phil osophy of
"if texture is disabled, this node does not apply".
New Procedures and Functi ons
None.
New Tokens
Accepted by the <pname> paraneter of LightMdel*, and also by the
<pnane> par aneter of CetBool eanv, Cetlntegerv, CGetFloatv, and
CGet Doubl ev:
L1 GHT_MODEL_COLOR_CONTROL_EXT Ox81F8

Accepted by the <parant paraneter of LightMdel* when <pnane> is
LI GHT_MODEL_COLOR_CONTROL_EXT:

SI NGLE_CCOLOR_EXT 0x81F9
SEPARATE_SPECULAR_COLOR_EXT Ox81FA

Additions to Chapter 2 of the 1.0 Specification (OpenG. Qperation)

- (2.13, p. 40) Rework the second paragraph to acknow edge two

col ors:
"Next, lighting, if enabled, produces either a color index or
primary and secondary colors. |If lighting is disabled, the

current color index or color is used in further processing (the
current color is the primary color and the secondary color is 0).
After lighting, colors are clanped..."

- (Figure 2.8, p. 41) Change RGBA to primary RGBA and secondary RGB

Ideally, there m ght be an RGB2 underneath RGBA (both pl aces).
Alternatively, a note in the caption could clarify that RGBA
referred to the primary RGBA and a secondary RGB. (Speaking of
the caption, the part about "mis the nunber of bits an R G B,
or A conponent” could be renoved as m doesn't appear in the

di agram)

65

EXT_separate_specular_color NVIDIA OpenGL Extension Specifications

- (2.13.1, p. 42) Rework the opening of this section to not inply a
single color:

In the first sentence, change "a color"” to "colors". Rephrase the
item zation of the two lighting states to:

"1. Lighting Of. In this state, the current color is assigned to
the vertex primary color. The vertex secondary color is O.

2. Lighting On. In this state, the vertex primary and secondary
colors are conmputed fromthe current lighting paraneters.™

- (Table 2.7, p.44) Add new entry (at the bottom:

Parameter Type Default Value Descri ption

c_es enum SINGLE _COLOR EXT controls conputation of colors
- (p. 45, top of page) Rephrase the first line and equation:

"Lighting produces two colors at a vertex: a primary color c_1 and
a secondary color c_2. The values of c_1 and c_2 depend on the
light nodel color control, c_es (note: c_es should be in italics
and c_1 and ¢c_2 in bold, so this really won't be as confusing as
it seems). If c_es = SINGLE_ COLOR EXT, then the equations to
conpute c¢_1 and c_2 are (note: the equation for c_1 is the current
equation for c):

c1l=ecm
+ acm* a.cs
+ SUMatt_i * spot_i * (a_cm?* a_cli
+ dot(n, VP_pli) * d_cm?* d_cli
+ f_i * dot(n, h_i)*s_rm* s_cm?* s_cli)
c2=0
If c_es = SEPARATE_SPECULAR CO_OR_EXT, then:
c 1 e cm

acm?* acs
SUM (att i * spot_i * (a_cm* a_cli
+ (n dot VP _pli) * d cm* d_cli)

+ + 1

c_2 =SUMatt_i * spot_i * (f_i * (ndot h_i)*s_ rm* s _cm?* s_cli)

- (p. 45, second paragraph frombottom Cdarify that Ais in the
primary col or:

After the sentence "The value of A produced by lighting is the
al pha val ue associated with d_cnf, add "A is always associ at ed
with the primary color c_1; c¢_2 has no al pha conponent."”

- (Table 2.8, p. 48) Add a new entry (at the bottom:
Paraneter Nane Nurmber of val ues

c_es LI GHT_MODEL_COLOR_CONTROL_EXT 1

66

NVIDIA OpenGL Extension Specifications EXT_separate_specular_color

- (2.13.6, p. 51) darify that both primary and secondary colors are
cl anped:

Repl ace "RGBA" in the first line of the section with "both primary
and secondary".

- (2.13.7, p. 52) darify what happens to primary and secondary
colors when flat shading--reword the first paragraph

"Aprimtive may be flatshaded, nmeaning that all vertices of the
primtive are assigned the sanme color index or primary and
secondary colors. These cone fromthe vertex that spawned the
primtive. For a point, these are the colors associated with the
point. For a line segnent, they are the colors of the second
(final) vertex of the segnent. For a polygon, they cone froma
sel ected vertex dependi ng on how the pol ygon was generated. Table
2.9 summari zes the possibilities.”

- (2.13.8, p. 52) Rework to not inply a single color
In the second sentence, change "If the color is" to "Those" and ",
it is" to "are". In the first sentence of the next paragraph
change "the color” to "two col ors”

Additions to Chapter 3 of the 1.0 Specification (Rasterization)

- (Figure 3.1, p. 55) Add a box between texturing and fog called
"color suni.

- (3.8, p. 85 In the first paragraph, second sentence, insert
"primary" before RGBA. Insert after this sentence "Texturing does
not affect the secondary color."

- (new section before 3.9) Insert new section titled "Col or Sunt

"At the beginning of this stage in RGBA node, a fragment has two
colors: a primary RGBA color (which texture, if enabled, may have
nodi fi ed) and a secondary RGB color. This stage sunms the R, G
and B conponents of these two colors to produce a single RGBA
color. If the resulting RGB val ues exceed 1.0, they are cl anped
to 1.0.

In color index node, a fragment only has a single color index and
this stage does nothing."

Additions to Chapter 4 of the 1.0 Specification (Per-Fragment Operations
and the Franme Buffer)

None.
Additions to Chapter 5 of the 1.0 Specification (Special Functions)
- (5.3, p. 137) Specify that feedback returns the primary col or by

changi ng the | ast sentence of the |large paragraph in the mddle
of the page to:

67

EXT_separate_specular_color NVIDIA OpenGL Extension Specifications

"The colors returned are the primary colors. These colors and the
texture coordi nates are those resulting fromthe clipping operations
as described in section 2.13.8."
Additions to Chapter 6 of the 1.0 Specification (State and State Requests)
- (Table 6.9, p. 157) Add:
Get Val ue - LI GHT_MODEL_COLOR_CONTROL_EXT
Type - Z2
Get CGmd - CGetlntegerv
Initial Value - SINGLE_COLOR_EXT
Description - color control
Sec. - (whatever it ends up as)
Attribute - lighting
Additions to the GX Specification
None.
G.X Protocol
None.
Errors
None.
New St at e

(see changes to table 6.9)

68

NVIDIA OpenGL Extension Specifications EXT_shared_texture_palette

Nanme
EXT_shared_texture_palette
Nane Strings
GL_EXT_shared_texture_palette
Ver si on
$Dat e: 1997/09/10 23:23:04 $ $Revision: 1.2 $
Nurnber
141
Dependenci es
EXT_paletted_texture is required.
Overvi ew
EXT_shared_texture_palette defines a shared texture palette which may be
used in place of the texture object palettes provided by
EXT_paletted_texture. This is useful for rapidly changing a palette
common to many textures, rather than having to rel oad the new palette
for each texture. The extension acts as a switch, causing all | ookups
that would normally be done on the texture's palette to instead use the
shared palette.
| ssues
* Do we want to use a new <target> to Col orTable to specify the
shared palette, or can we just infer the new target fromthe
correspondi ng Enabl e?
* A future extension of l|arger scope might define a "texture palette
object” and bind these objects to texture objects dynam cally, rather
than maki ng pal ettes part of the texture object state as the current

EXT_pal etted_texture spec does.

* Should there be separate shared palettes for 1D, 2D, and 3D
textures?

Probably not; palette | ookups have nothing to do with the
dimensionality of the texture. If multiple shared palettes
are needed, we should define palette objects.

* There's no proxy mechani smfor checking if a shared palette can
be defined with the requested paraneters. WIIl it suffice to
assune that if a texture palette can be defined, so can a shared
palette with the same paraneters?

* The changes to the spec are based on changes al ready made for

EXT_pal etted_texture, which neans that all three documents mnust
be referred to. This is quite difficult to read.

69

EXT_shared_texture_palette NVIDIA OpenGL Extension Specifications

* The changes to section 3.8.6, defining how shared pal ettes are
enabl ed and di sabl ed, m ght be better placed in section 3.8.1.
However, the underlying EXT _pal etted_texture does not appear to
nmodi fy these sections to define exactly how pal ette | ookups are
done, and it's not clear where to put the changes.

New Procedures and Functi ons
None
New Tokens

Accepted by the <pnanme> paraneters of GetBool eanv, Getlntegerv,
Cet Fl oat v, GCet Doubl ev, |sEnabl ed, Enable, D sable, Col or Tabl eEXT

Col or SubTabl eEXT, GCet Col or Tabl eEXT, Get Col or Tabl ePar anet eri vVEXT, and
Cet Col or Tabl ePar amet erfd EXT:

SHARED TEXTURE_PALETTE_EXT Ox81FB

Additions to Chapter 2 of the 1.1 Specification (OpenG. Qperation)
None

Additions to Chapter 3 of the 1.1 Specification (Rasterization)

Section 3.8, 'Texturing,' subsection 'Texture Image Specification' is
nodi fied as foll ows:

In the Palette Specification Commands section, the sentence
beginning 'target specifies which texture is to' should be changed
to:

target specifies the texture palette or shared palette to be
changed, and may be one of TEXTURE 1D, TEXTURE_2D,
PROXY_TEXTURE_1D, PROXY_TEXTURE_2D, TEXTURE_3D_EXT,
PROXY_TEXTURE_3D_EXT, or SHARED TEXTURE_PALETTE_EXT.

In the 'Texture State and Proxy State' section, the sentence

beginning 'A texture's palette is initially...' should be changed
to:

There is also a shared palette not associated with any texture, which
may override a texture palette. Al palettes are initially...

Section 3.8.6, "Texture Application' is nodified by appendi ng the
fol | owi ng:

Use of the shared texture palette is enabled or disabled using the
generic Enable or Disable commands, respectively, with the synbolic
const ant SHARED TEXTURE_PALETTE_EXT.

The required state is one bit indicating whether the shared palette is
enabl ed or disabled. In the initial state, the shared palettes is
di sabl ed.

Additions to Chapter 4 of the 1.1 Specification (Per-Fragment Operations
and the Franme buffer)

70

NVIDIA OpenGL Extension Specifications EXT_shared_texture_palette

Additions to Chapter 5 of the 1.1 Specification (Special Functions)
Additions to Chapter 6 of the 1.1 Specification (State and State Requests)

In the section on CetTexl mage, the sentence beginning 'If format is
not COLOR I NDEX...' should be changed to:

If format is not COLOR INDEX, the texture's indices are passed
through the texture's palette, or the shared palette if one is
enabl ed, and the resulting conponents are assigned among R G B,
and A according to Table 6.1.

In the GetCol or Tabl e section, the first sentence of the second
par agraph shoul d be changed to read:

CGet Col or Tabl eEXT retrieves the texture palette or shared palette
gi ven by target.

The first sentence of the third paragraph shoul d be changed to read:
Pal ette paraneters can be retrieved using

voi d Cet Col or Tabl ePar anet eri vEXT(enum target, enum pnane, int *parans);
voi d Cet Col or Tabl ePar anet er f vEXT(enum t arget, enum pnane, float *parans);

target specifies the texture palette or shared palette being
gueried and pnanme controls which paraneter value is returned.

Additions to the GX Specification

None
New St at e
Get Val ue Get Command Type Initial Value Attribute
SHARED_TEXTURE_PALETTE_EXT IsEnabled B False texture/ enabl e

New | npl ement ati on Dependent State

None

71

EXT_stencil_wrap NVIDIA OpenGL Extension Specifications

Nanme
EXT_stencil _wap

Nane Strings
GL_EXT_stencil _wrap

Ver si on
Date: 11/15/1999 Version 1.2

Nurnber
176

Dependenci es
None

Overvi ew
Various algorithns use the stencil buffer to "count"” the nunber of
surfaces that a ray passes through. As the ray passes into an object,
the stencil buffer is increnented. As the ray passes out of an object,
the stencil buffer is decrenented.
G requires that the stencil increment operation clanps to its maxi num
value. For algorithms that depend on the difference between the sum
of the increnents and the sum of the decrenents, clanping causes an

erroneous result.

Thi s extension provides an enable for both maxi mum and m ni mum w appi ng
of stencil values. Instead, the stencil value waps in both directions.

Two additional stencil operations are specified. These new operations
are simliar to the existing | NCR and DECR operations, but they wap their
result instead of saturating it. This functionality matches the new
stenci|l operations introduced by DirectX 6.

New Procedures and Functi ons
None

New Tokens

Accepted by the <node> paraneter of Bl endEquation:

| NCR_WWRAP_EXT 0x8507
DECR_WRAP_EXT 0x8508

Additions to Chapter 2 of the G Specification (QpenG Operation)

None

72

NVIDIA OpenGL Extension Specifications EXT_stencil_wrap

Additions to Chapter 3 of the GL Specification (Rasterization)
None
Additions to Chapter 4 of the G Specification (Per-Fragnment Operations
and the Franebuffer)
Section 4.1.4 "Stencil Test" (page 144), change the 3rd paragraph to read:
"... The synbolic constants are KEEP, ZERO, REPLACE, | NCR, DECR,
I NVERT, | NCR WRAP_EXT, and DECR WRAP_EXT. The correspond to
keepi ng the current value, setting it to zero, replacing it with
the reference value, incrementing it with saturation, decrenenting
it wth saturation, bitwise inverting it, incrementing it wthout
saturation, and decrenenting it without saturation. For purposes of
i ncrenenting and decrenenting, the stencil bits are considered as an
unsi gned integer. Incrementing or decrenmenting with saturation will
clanp values at 0 and the maxi num representabl e value. Increnenting
or decrenenting without saturation will wap such that increnmenting
t he maxi mum representabl e value results in 0 and decrenenting O
results in the maxi mum representabl e val ue. "
Additions to Chapter 5 of the G Specification (Special Functions)
None
Additions to Chapter 6 of the GL Specification (State and State Requests)
None
Additions to the GX Specification
None
G.X Protocol
None
Errors
I NVALID ENUM i s generated by Stencil Op if any of its paraneters
are not KEEP, ZERO, REPLACE, |INCR, DECR, |NVERT, |NCR WRAP_EXT,
or DECR WRAP_EXT.
New St at e
(table 6.15, page 205)
Get Val ue Type Get Command Initial Value Sec Attribute
STENCI L_FAI L Z8 Get I nt egerv KEEP 4.1.4 stencil-buffer
STENCI L_PASS _DEPTH_FAI L Z8 Get I nt egerv KEEP 4.1.4 stencil-buffer
STENCI L_PASS_DEPTH_PASS Z8 Get I nt egerv KEEP 4.1.4 stencil-buffer

NOTE: the only change is that Z6 type changes to Z8

New

| mpl enent ati on Dependent State

None

73

EXT_texture_cube_map

Nanme

EXT_t exture_cube_map
Nane Strings

GL_EXT_texture_cube_map
Noti ce

Copyri ght NvI DI A Corporation,
Ver si on

Novenber 15, 1999
Nurnber

?2?
Dependenci es

None.

1999.

NVIDIA OpenGL Extension Specifications

Witten based on the wording of the Open@ 1.2 specification but

not dependent on it.

Overvi ew

Thi s extension provides a new texture generation schene for cube

map textures.

Instead of the current texture providing a 1D, 2D

or 3D lookup into a 1D, 2D, or 3D texture inage, the texture is a

set of six 2D images representing the faces of a cube.

The (s,t,r)

texture coordinates are treated as a direction vector enmanating from

the center of a cube.

At texture generation tinme, the interpol ated

per-fragment (s,t,r) selects one cube face 2D i nrage based on the

| argest magni tude coordinate (the mgjor axis).

A new 2D (s,t) is

cal cul ated by dividing the two other coordinates (the m nor axes

val ues) by the major axis val ue.

Then the new (s,t) is used to

| ookup into the selected 2D texture i mage face of the cube map

Unli ke a standard 1D, 2D, or

a cube map texture has six targets,

and have a square di nension

3D texture that have just one target,
one for each of its six 2D texture
i mage cube faces. Al these targets mnust

be consi stent, conplete,

Thi s extension al so provides two new texture coordi nate generation nodes

for use in conjunction with cube map texturing.

The reflection map

node generates texture coordinates (s,t,r) matching the vertex's

eye-space reflection vector

The refl ecti on map node

is useful for environment mapping without the singularity inherent
map node generates texture coordi nates
(s,t,r) matching the vertex's transformed eye-space

i n sphere nmappi ng.

nor mal .

The nor nal

The normal map node is useful

for sophisticated cube

map texturing-based diffuse |ighting nodels.

NVIDIA OpenGL Extension Specifications EXT_texture_cube_map

The intent of the new texgen functionality is that an application using
cube map texturing can use the new texgen nodes to automatically
generate the reflection or nornmal vectors used to look up into the

cube map texture.

An application note: Wen using cube mapping with dynam c cube

maps (meaning the cube map texture is re-rendered every frane),

by keeping the cube map's orientation pointing at the eye position

t he texgen-conmputed reflection or nornmal vector texture coordinates
can be always properly oriented for the cube map. However if the
cube map is static (neaning that when vi ew changes, the cube nmap
texture is not updated), the texture matrix nust be used to rotate

t he texgen-conmputed reflection or normal vector texture coordinates
to match the orientation of the cube map. The rotation can be
conput ed based on two vectors: 1) the direction vector fromthe cube
map center to the eye position (both in world coordi nates), and 2)
the cube map orientation in world coordinates. The axis of rotation
is the cross product of these two vectors; the angle of rotation is
the arcsin of the dot product of these two vectors.

| ssues

Shoul d we place the normal/reflection vector in the (s,t,r) texture
coordi nates or (s,t,q) coordinates?

RESOLUTION: (s,t,r). Even if hardware uses "q" for the third
conponent, the APl should claimto support generation of (s,t,r)
and let the texture matrix (through a concatenation with the
user-supplied texture matrix) nmove "r" into

g .

Shoul d the texture coordi nate generation functionality for cube
mappi ng be specified as a distinct extension fromthe actual cube
map texturing functionality?

RESOLUTION: NO Real applications and real inplenentations of

cube mapping will tie the texgen and texture generation functionality
together. Applications won't have to query two separate

extensi ons then.

VWil e applications will alnpst always want to use the texgen
functionality for automatically generating the reflection or normal
vector as texture coordinates (s,t,r), this extension does permt
an application to manually supply the reflection or normal vector

t hrough gl TexCoord3f explicitly.

Note that the NV_texgen_reflection extension does "unbundle"
the texgen functionality from cube naps.

Shoul d you be able to have sonme texture coordi nates conputing
REFLECTI ON_MAP_EXT and others not? Same question w th NORMAL_MAP_EXT

RESOLUTION: YES. This is the way that SPHERE MAP works. It is
not clear that this would ever be useful though

Shoul d sonet hi ng speci al be said about the handling of the q
texture coordinate for this spec?

75

EXT_texture_cube_map NVIDIA OpenGL Extension Specifications

RESOLUTION: NO But the followi ng paragraph is useful for
i npl enent ors concerned about the handling of g.

The REFLECTI ON_MAP_EXT and NORMAL_MAP_EXT nodes are intended to supply
reflection and normal vectors for cube map texturing hardware.

VWhen these nodes are used for cube map texturing, the generated
texture coordi nates can be thought of as a reflection vector

The value of the q texture coordinate then sinply scales the

vector but does not change its direction. Because only the vector
direction (not the vector magnitude) matters for cube map texturing,

i npl enentations are free to | eave q undefi ned when any of the s,

t, or r texture coordi nates are generated usi ng REFLECTI ON_MAP_EXT

or NORVAL_MAP_EXT.

How shoul d the cube faces be | abel ed?

RESOLUTI ON: Match the render man specification's names of
(positive X), "nx" (negative x), "py", "ny", "pz", and "nz"

There does not actually need to be an "ordering for the faces”
(Direct3D 7.0 does nunber their cube map faces.) For this

extension, the synbolic target nanes (TEXTURE CUBE MAP_PCSI Tl VE_X EXT
etc) is sufficient without requiring any specific ordering.

pX

VWhat coordi nate system convention should be used? LHS or RHS?

RESOLUTI ON: The coordi nate systemis |eft-handed if you think
of yourself within the cube. The coordinate systemis
right-handed if you think of yourself outside the cube.

Thi s matches the convention of the RenderMan interface. |If

you | ook at Figure 12.8 (page 265) in "The Render Man Conpani on"
t hi nk of the cube being folded up with the observer inside

the cube. Then the coordinate system convention is

| ef t - handed.

The spec just linearly interpolates the reflection vectors conputed
per-vertex across polygons. 1Is there a probleminterpolating
reflection vectors in this way?

Probably. The better approach would be to interpolate the eye
vector and normal vector over the polygon and performthe reflection
vector computation on a per-fragnent basis. Not doing so is likely
to lead to artifacts because angul ar changes in the normal vector
result in twice as large a change in the reflection vector as nornal
vector changes. The effect is likely to be reflections that becone
glancing reflections too fast over the surface of the pol ygon

Note that this is an issue for REFLECTI ON MAP_EXT, but not
NORVAL_VAP_EXT.

VWhat happens if an (s,t,q) is passed to cube map generation that
is close to (0,0,0), ie. a degenerate direction vector?

RESOLUTI ON: Leave undefi ned what happens in this case (but
may not lead to GL interruption or termnation).

Note that a vector close to (0,0,0) nay be generated as a

76

NVIDIA OpenGL Extension Specifications EXT_texture_cube_map

result of the per-fragment interpolation of (s,t,r) between
vertices.

Do we need a distinct proxy texture nechani smfor cube map
textures?

RESOLUTI ON: YES. Cube map textures take up six times the
menory as a conventional 2D inmage texture so proxy 2D texture
determ nati ons won't be of value for a cube map texture.

Cube maps need their own proxy target.

Should we require the 2D texture inmage wi dth and height to
be identical (ie, square only)?

RESOLUTION: YES. This limtation is quite a reasonable [imtation
and DirectX 7 has the sane limtation

This restriction is enforced by generating an | NVALI D VALUE
when cal | i ng Texl mage2D or CopyTexl mage2D wi th a non-equa
wi dt h and hei ght.

Sonme consi deration was given to enforcing the "squarness”
constraint as a texture consistency constraint. This is
confusi ng however since the squareness i s known up-front

at texture inmage specification tine so it seenms confusing
to silently report the usage error as a texture consistency
i ssue.

Texture consistency still says that all the level 0 textures
of all six faces nust have the sane square size

I f sone conbination of 1D, 2D, 3D, and cube map texturing is
enabl ed, which really operates?

RESOLUTI ON: Cube map texturing. In Qpen@ 1.2, 3D takes
priority over 2D takes priority over 1D. Cube mappi ng shoul d
take priority over all conventional n-dinensional texturing
schenes.

Does anyt hing need to be said about conbi ni ng cube mapping with
mul titexture?

RESOLUTI ON: NO. Cube mappi ng shoul d be avail able on either
texture unit. The hardware should fully orthogonal in its handling
of cube map textures.

Does it make sense to support borders for cube map textures.

Actually, it does. It would be nice if the texture border pixels
match the appropriate texels fromthe edges of the other cube map
faces that they junction with. For this reason, we'll |eave the

texture border capability inplicitly supported.

How does mi pmap | evel -of -detail selection work for cube map
textures?

The existing spec's | anguage about LOD selection is fine.

77

EXT_texture_cube_map NVIDIA OpenGL Extension Specifications

Shoul d the inplenmentati on dependent value for the maxi num
texture size for a cube map be the sane as MAX _TEXTURE_SI ZE?

RESOLUTI ON: NO. OpenGL 1.2 has a different MAX_3D TEXTURE_ S| ZE

for 3D textures, and cube maps should take six tinmes nore space

than a 2D texture map of the same width & height. The inplenentation
dependent MAX CUBE_NMAP_TEXTURE_SI ZE EXT constant shoul d be used for
cube maps then.

Note that the proxy cube map texture provides a better way to
find out the maxi mnum cube map texture size supported since the
proxy mechani smcan take into account the internal format, etc.

In section 3.8.10 when the "l argest magnitude coordi nate direction”
i s choosen, what happens if two or nore of the coordinates (rx,ry,rz)
have the identical magnitude?

RESOLUTI ON: I npl enentati ons can define their own rule to choose

the | argest magnitude coordinate direction whne two or nore of the
coordi nates have the identical magnitude. The only restriction is
that the rule nust be determ nistic and depend only on (rx,ry,rz).

In practice, (s,t,r) is interpol ated across polygons so the cases
where |s|==|t|, etc. are pretty arbitary (the equality depends on

i nterpolation precision). This extension could mandate a particul ar
rul e, but that seens heavy-handed and there is no good reason that
mul ti pl e vendors should be forced to inplenment the sane rule.

Shoul d there be limts on the supported border nodes for cube maps?

RESOLUTION: NO. The specificiation is witten so that cube map
texturing proceeds just |ike conventional 2D texture nmapping once
the face determination is made

Therefore, all Open@ texture wap nodes shoul d be supported though
some nodes are clearly inappropriate for cube maps. The WRAP node
is alnost certainly incorrect for cube maps. Likew se, the CLAWP
node wi thout a texture border is alnost certainly incorrect for cube
maps. CLAMP when a texture border is present and CLAMP_TO EDCE are
both reasonably suited for cube maps. ldeally, CLAMP with a texture
border works best if the cube map edges can be replicated in the
approriate texture borders of adjacent cube map faces. |In practice,
CLAMP_TO EDGE wor ks reasonably well in nmpost circunstances.

Per haps anot her extension coul d support a special cube map wap
node that automatically waps individual texel fetches to the
appropriate adjacent cube map face. The benefit from such a node
is small and the inplenmentation conplexity is involved so this wap
node should not be required for a basic cube map texture extension

How is m pmap LOD sel ection handl ed for cube map textures?
RESOLUTI ON: The specification is witten so that cube map texturing

proceeds just l|ike conventional 2D texture mapping once the face
determ nation is nade

78

NVIDIA OpenGL Extension Specifications EXT_texture_cube_map

Thereforce, the partial differentials in Section 3.8.5 (page
126) should be evaluated for the u and v paraneters based on the
post-face determi nation s and t.

In Section 2.10.3 "Normal Transformation", there are several versions
of the eye-space normal vector to choose from \Which one should
t he NORVMAL_MAP_ARB t exgen node use?

RESOLUTION: nf. The nf vector is the final normal, post-rescale
normal and post-normalize. In practice, the rescale normal and
normal i ze operations do not change the direction of the vector

so the choice of which version of transforned normal is used is
not inportant for cube nmaps.

New Procedures and Functi ons
None
New Tokens

Accepted by the <parant paraneters of TexGend, TexGenf, and TexGeni
when <pnanme> paraneter i s TEXTURE GEN MODE:

NORMAL_MVAP_EXT 0x8511
REFLECTI ON_MAP_EXT 0x8512

VWen the <pnane> paraneter of TexCGendv, TexGenfv, and TexCeniv is
TEXTURE_GEN _MODE, then the array <paranms> may al so contain
NORMAL_MAP_EXT or REFLECTI ON_MAP_EXT.

Accepted by the <cap> paraneter of Enable, D sable, |sEnabled, and
by the <pname> paraneter of GCetBool eanv, Cetlntegerv, CetFl oatv,
and Get Doubl ev, and by the <target> paraneter of Bi ndTexture,

Get TexPar aneterfv, GetTexParaneteriv, TexParaneterf, TexParaneteri,
TexPar aneterfv, and TexParaneteriv:

TEXTURE_CUBE_MAP_EXT 0x8513

Accepted by the <pnanme> paraneter of GetBool eanv, Getlntegerv,
Get Fl oat v, and Get Doubl ev:

TEXTURE_BI NDI NG_CUBE_MAP_EXT 0x8514
Accepted by the <target> paraneter of GCetTexlmage,

Cet TexLevel Paraneteriv, CGetTexLevel Paraneterfv, Texl mage2D,
CopyTexl mage2D, TexSubl mage2D, and CopySubTexl nage2D:

TEXTURE_CUBE_MAP_PCSI Tl VE_X_EXT 0x8515
TEXTURE_CUBE_MAP_NEGATI VE_X_EXT 0x8516
TEXTURE_CUBE_MAP_PCSI Tl VE_Y_EXT 0x8517
TEXTURE_CUBE_MAP_NEGATI VE_Y_EXT 0x8518
TEXTURE_CUBE_MAP_PCSI Tl VE_Z_EXT 0x8519
TEXTURE_CUBE_MAP_NEGATI VE_Z_EXT 0x851a

Accepted by the <target> paraneter of CetTexLevel Paraneteriv,
Cet TexLevel Paraneterfv, GetTexParaneteriv, and Texl nage2D:

79

EXT_texture_cube_map NVIDIA OpenGL Extension Specifications

PROXY_TEXTURE_CUBE_MAP_EXT 0x851b

Accepted by the <pnanme> paraneter of GetBool eanv, GetDoubl ev,
CGet I ntegerv, and GetFl oatv:

MAX_CUBE_MAP_TEXTURE S| ZE_EXT 0x851c
Additions to Chapter 2 of the 1.2 Specification (OpenG. Qperation)
-- Section 2.10.4 "Generating Texture Coordi nates"
Change the last sentence in the 1st paragraph to:

"If <pnanme> is TEXTURE_GEN _MODE, then either <paranms> points to
or <paranp is an integer that is one of the synbolic constants
OBJECT_LI NEAR, EYE LI NEAR, SPHERE MAP, REFLECTI ON_MAP_EXT, or
NORMAL_MAP_EXT. "

Add these paragraphs after the 4th paragraph

"I f TEXTURE_GEN _MODE i ndi cat es REFLECTI ON_MAP_EXT, conpute the
reflection vector r as described for the SPHERE MAP node. Then the
val ue assigned to an s coordinate (the first TexGen argunent val ue
isS) iss =rx; the value assigned to at coordinate is t = ry;
and the value assigned to ar coordinate is r =rz. Calling TexGen
with a <coord> of Q when <pnane> indi cates REFLECTI ON_MAP_EXT
generates the error | NVALI D_ENUM

| f TEXTURE_GEN_MODE i ndi cates NORVAL_MAP_EXT, conpute the norma
vector nf as described in section 2.10.3. Then the val ue assi gned
to an s coordinate (the first TexGen argunment value is S) is s =
nfx; the value assigned to at coordinate is t = nfy; and the

val ue assigned to a r coordinate is r = nfz. (The values nfx, nfy,
and nfz are the components of nf.) Calling TexGen with a <coord>
of Q when <pnane> indi cates NORMAL_MAP_EXT generates the error

| NVALI D_ENUM

The | ast paragraph's first sentence shoul d be changed to:

"The state required for texture coordi nate generation conprises a
five-val ued integer for each coordi nate indicating coordinate
gener ati on node, "

Additions to Chapter 3 of the 1.2 Specification (Rasterization)
-- Section 3.6.5 "Pixel Transfer Qperations"” under "Convol ution”
Change this paragraph to say:

"If CONVOLUTION 2D i s enabl ed, the two-di nensional convol ution
filter is applied only to the two-dinmensional images passed to
Dr awPi xel s, CopyPi xel s, ReadPi xel s, Texl mage2D, TexSubl mage2D
CopyTexl mage2D, CopyTexSubl mage2D, and CopyTexSubl mage3D, and
returned by GetTexlnmage with one of the targets TEXTURE 2D
TEXTURE_CUBE_MAP_POSI Tl VE_X_EXT, TEXTURE_CUBE_MAP_NEGATI VE_X_EXT
TEXTURE_CUBE_MAP_POSI Tl VE_Y_EXT, TEXTURE_CUBE_MAP_NEGATI VE_Y_EXT,
TEXTURE_CUBE_MAP_POSI Tl VE_Z_EXT, or TEXTURE_CUBE_MAP_NEGATI VE_Z EXT."

80

NVIDIA OpenGL Extension Specifications EXT_texture_cube_map

-- Section 3.8.1 "Texture |Inage Specification”
Change the first full sentence on page 117 to:

"<target> must be one of TEXTURE 2D for a 2D texture, or one of
TEXTURE_CUBE_MAP_PGCSI Tl VE_X_EXT, TEXTURE_CUBE_NAP_NEGATI VE_X_EXT
TEXTURE_CUBE_MAP_POSI Tl VE_Y_EXT, TEXTURE_CUBE_NAP_NEGATI VE_Y_EXT,
TEXTURE_CUBE_MAP_POSI Tl VE_Z_EXT, or TEXTURE_CUBE_NMAP_NEGATI VE_Z EXT
for a cube map texture. Additionally, <target> can be either
PROXY_TEXTURE_2D for a 2D proxy texture or PROXY_TEXTURE CUBE MAP_EXT
for a cube map proxy texture as discussed in section 3.8.7."

Add the follow ng paragraphs after the first paragraph on page 117:

"A 2D texture consists of a single 2D texture image. A cube

map texture is a set of six 2D texture inmages. The six cube map
texture targets forma single cube map texture though each target
nanes a distinct face of the cube map. The TEXTURE CUBE MAP_* EXT
targets |listed above update their appropriate cube map face 2D
texture image. Note that the six cube map 2D i mage tokens such as
TEXTURE_CUBE_NAP_PCSI TI VE_X_EXT are used when speci fying, updating,
or querying, one of a cube map's six 2D i mage, but when enabling
cube map texturing or binding to a cube map texture object (that is
when the cube map is accessed as a whol e as opposed to a particul ar
2D image), the TEXTURE CUBE MAP_EXT target is specified.

VWhen the target paranmeter to Texlmage2D is one of the six cube map
2D image targets, the error INVALID VALUE is generated if the width
and hei ght paraneters are not equal

If cube map texturing is enabled at the tine a primtive is
rasterized and if the set of six targets are not "cube conplete”
then it is as if texture mappi ng were di sabled. The targets of
a cube map texture are "cube conplete"” if the array 0 of all six
targets have identical and square dinmensions, the array 0 of al
six targets were specified with the sanme internalformat, and

the array 0 of all six targets have the sane border wi dth."

After the 14th paragraph add:
"In a simliar fashion, the maxi mum all owabl e wi dt h and hei ght
(they must be the sane) of a cube map texture nust be at | east
2"(k-1o0d) +2bt for image arrays level 0 through k, where k is the
| og base 2 of MAX_CUBE_NAP_TEXTURE_SI ZE EXT."

-- Section 3.8.2 "Alternate Texture |nage Specification Conmands"
Update the second paragraph (page 120) to say:
. "Currently, <target> must be
TEXTURE_2D, TEXTURE_CUBE_MAP_PGCSI TI VE_X_EXT
TEXTURE_CUBE_NMAP_NEGATI VE_X_EXT, TEXTURE_CUBE_MAP_POSI Tl VE_Y_EXT,
TEXTURE_CUBE_NMAP_NEGATI VE_Y_EXT, TEXTURE_CUBE_MAP_POSI Tl VE_Z_EXT
or TEXTURE_CUBE_MAP_NEGATI VE_Z_EXT. "

Add after the second paragraph (page 120), the foll ow ng:

81

EXT_texture_cube_map NVIDIA OpenGL Extension Specifications

"When the target paraneter to CopyTexl nage2D is one of the six cube
map 2D i mage targets, the error I NVALID VALUE is generated if the
wi dt h and hei ght paraneters are not equal."

Update the fourth paragraph (page 121) to say:

. "Currently the target arguments of TexSubl magelD and
CopyTexSubl magelD nmust be TEXTURE_1D, the <target> argunents of
TexSubl mage2D and CopyTexSubl mage2D nmust be one of TEXTURE_2D,
TEXTURE_CUBE_MAP_POSI Tl VE_X_EXT, TEXTURE_CUBE_MAP_NEGATI VE_X_EXT
TEXTURE_CUBE_MAP_POSI Tl VE_Y_EXT, TEXTURE_CUBE_MAP_NEGATI VE_Y_EXT,
TEXTURE_CUBE_MAP_POSI Tl VE_Z_EXT, or TEXTURE_CUBE_MAP_NEGATI VE_Z EXT
and the <target> argunents of TexSubl mage3D and CopyTexSubl mage3D
nmust be TEXTURE_3D."

-- Section 3.8.3 "Texture Paraneters”
Change paragraph one (page 124) to say:

"<target> is the target, either TEXTURE 1D
TEXTURE_2D, TEXTURE_3D, or TEXTURE_CUBE_MAP_EXT. "

Add a final paragraph saying:

"Texture paranmeters for a cube map texture apply to cube map
as a whole; the six distinct 2D texture inages use the
texture parameters of the cube map itself.

-- Section 3.8.5 "Texture Mnification" under "M pnappi ng"
Change the first full paragraph on page 130 to:

"If texturing is enabled for one-, two-, or three-dinmensiona
texturing but not cube map texturing (and TEXTURE M N _FI LTER
is one that requires a mpmap) at the tinme a primtive is
rasterized and if the set of arrays TEXTURE BASE LEVEL through q =
m n{p, TEXTURE_MAX LEVEL} is inconplete, based on the dinensions of
array 0, then it is as if texture mapping were disabled.”

Foll ow the first full paragraph on page 130 with:

"I'f cube map texturing is enabled and TEXTURE M N FILTER i s one that
requires mpmap levels at the time a primtive is rasterized and

if the set of six targets are not "m pmap cube conplete”, then it

is as if texture mapping were disabled. The targets of a cube map
texture are "m pmap cube conplete” if the six cube map targets are
"cube conplete” and the set of arrays TEXTURE BASE LEVEL t hrough

g are not inconplete (as described above)."

-- Section 3.8.7 "Texture State and Proxy State”
Change the first sentence of the first paragraph (page 131) to say:
"The state necessary for texture can be divided into two categories.

First, there are the nine sets of m pmap arrays (three for the one-,
two-, and three-dinmensional texture targets and six for the cube

82

NVIDIA OpenGL Extension Specifications EXT_texture_cube_map

map texture targets) and their nunmber.”
Change t he second paragraph (page 132) to say:

"In addition to the one-, two-, three-dinensional, and the six cube
map sets of inmage arrays, the partially instantiated one-, two-,
and t hree-di nensional and one cube nmap sets of proxy inmage arrays
are maintai ned. "

After the third paragraph (page 132) add:

"The cube map proxy arrays are operated on in the sanme manner

when Texl mage2D is executed with the <target> field specified as
PROXY_TEXTURE_CUBE_MAP_EXT with the addition that determ ning that a
gi ven cube map texture i s supported wth PROXY_TEXTURE CUBE_NMAP_EXT
i ndicates that all six of the cube map 2D i mages are supported.

Li kewi se, if the specified PROXY_TEXTURE CUBE MAP_EXT is not
supported, none of the six cube map 2D i nages are supported.”

Change t he second sentence of the fourth paragraph (page 132) to:

"Ther ef ore PROXY_TEXTURE_1D, PROXY_TEXTURE 2D, PROXY_TEXTURE_3D
and PROXY_TEXTURE CUBE MAP_EXT cannot be used as textures, and their
i mages nust never be queried using CGet Texl mage. ™

-- Section 3.8.8 "Texture (bjects”
Change the first sentence of paragraph one (page 133) to say:

"In addition to the default textures TEXTURE 1D, TEXTURE 2D,
TEXTURE 3D, and TEXTURE CUBE MAP_EXT, named one-, two-,

and three-di nensional texture objects and cube map texture objects
can be created and operated on."

Change t he second paragraph (page 133) to say:

"A texture object is created by binding an unused name to
TEXTURE_1D, TEXTURE_2D, TEXTURE 3D, or TEXTURE_CUBE_MAP_EXT."
"I'f the new texture object is bound to TEXTURE 1D, TEXTURE 2D
TEXTURE 3D, or TEXTURE CUBE MAP EXT, it remains a one-, two-,
t hree-di nensi onal, or cube map texture until it is deleted."

Change the third paragraph (page 133) to say:

"Bi ndTexture may al so be used to bind an existing texture object to
ei ther TEXTURE_1D, TEXTURE 2D, TEXTURE_3D, or TEXTURE_CUBE MAP_EXT."

Change paragraph five (page 133) to say:

“In the initial state, TEXTURE_ 1D, TEXTURE 2D, TEXTURE_3D

and TEXTURE CUBE _MAP have one-di nensi onal, two-di nensional

t hree-di nensi onal, and cube map state vectors associ at ed

with themrespectively.” ... "The initial, one-dinmensional

t wo- di nensi onal, three-di mensional, and cube map texture is therefore
operated upon, queried, and applied as TEXTURE_ 1D, TEXTUER 2D
TEXTURE_3D, and TEXTURE _CUBE_MAP_EXT respectively while 0 i s bound

to the corresponding targets."”

83

EXT_texture_cube_map NVIDIA OpenGL Extension Specifications

Change paragraph six (page 134) to say:

. "If a texture that is currently bound to one of the targets
TEXTURE_1D, TEXTURE_2D, TEXTURE_3D, or TEXTURE_CUBE_MAP_EXT is
deleted, it is as though Bi ndTexture has been executed with the
same <target> and <texture> zero."

-- Section 3.8.10 "Texture Application”

Repl ace the begi nning sentences of the first paragraph (page 136)
Wi t h:

"Texturing is enabl ed or disabled using the generic Enable

and Di sabl e commands, respectively, with the synbolic constants
TEXTURE_1D, TEXTURE_2D, TEXTURE_3D, or TEXTURE_CUBE_MAP_EXT to enabl e
t he one-di nensional, two-dinensional, three-dinensional, or cube

map texturing respectively. |If both two- and one-di nensi ona
textures are enabl ed, the two-dinmensional texture is used. |If the

t hr ee-di mensi onal and either of the two- or one-dinensional textures
i s enabl ed, the three-dinmensional texture is used. |If the cube map
texture and any of the three-, two-, or one-dinmensional textures is
enabl ed, then cube map texturing is used. |If texturing is disabled,

a rasterized fragnent is passed on unaltered to the next stage of the
G (although its texture coordinates may be discarded). O herw se,

a texture value is found according to the paraneter val ues of the
currently bound texture inage of the appropriate dinensionality.

However, when cube map texturing is enabled, the rules are

nore conplicated. For cube map texturing, the (s,t,r) texture
coordinates are treated as a direction vector (rx,ry,rz) emanating
fromthe center of a cube. (The g coordinate can be ignored since
it merely scales the vector without affecting the direction.) At
texture application tinme, the interpol ated per-fragnment (s,t,r)

sel ects one of the cube map face's 2D i mage based on the | argest
magni t ude coordinate direction (the major axis direction). If two
or nore coordi nates have the identical magnitude, the inplenentation
may define the rule to disanbiguate this situation. The rule nust
be determ nistic and depend only on (rx,ry,rz). The target colum
in the table bel ow explains how the major axis direction maps to the
2D image of a particular cube nmap target.

maj or axis

direction t ar get sc tc ma
+r X TEXTURE_CUBE_MAP_POSI Tl VE_X_EXT -rz -ry rx
-rX TEXTURE_CUBE_MAP_NEGATI VE_X_EXT +rz -ry rx
+ry TEXTURE_CUBE_MAP_POSI Tl VE_Y_EXT +r X +rz ry
-ry TEXTURE_CUBE_MAP_NEGATI VE_Y_EXT +r X -rz ry
+rz TEXTURE_CUBE_MAP_POSI Tl VE_Z_EXT +r X -ry rz
-rz TEXTURE_CUBE_MAP_NEGATI VE_Z_EXT -rX -ry rz

Using the sc, tc, and ma determined by the major axis direction as
specified in the table above, an updated (s,t) is calculated as
fol | ows

S = (sc/|m| +1) /] 2

84

NVIDIA OpenGL Extension Specifications EXT_texture_cube_map

t = (tc/|lm| +1)/ 2

If |ma| is zero or very nearly zero, the results of the above two
equati ons need not be defined (though the result may not lead to
G interruption or termnation).

This new (s,t) is used to find a texture value in the determ ned
face's 2D texture inage using the rules given in sections 3.8.5
and 3.8.6."

Additions to Chapter 4 of the 1.2 Specification (Per-Fragment Operations
and the Franme Buffer)

None
Additions to Chapter 5 of the 1.2 Specification (Special Functions)
-- Section 5.4 "Display Lists"

In the second to the | ast paragraph (page 179), add
PROXY_TEXTURE_CUBE_MAP_EXT to the list of PROXY_* tokens

Additions to Chapter 6 of the 1.2 Specification (State and State Requests)
-- Section 6.1.3 "Enunerated Queries”
Change the fourth paragraph (page 183) to say:

"The Get TexParaneter paraneter <target> may be one of TEXTURE 1D
TEXTURE_2D, TEXTURE_3D, or TEXTURE_CUBE_MAP_EXT, indicating the
currently bound one-di nensi onal, two-dinmensional, three-dinensional
or cube map texture object. For GetTexLevel Paraneter,

<target> may be one of TEXTURE_1D, TEXTURE 2D, TEXTURE_3D,
TEXTURE_CUBE_MAP_POSI Tl VE_X_EXT, TEXTURE_CUBE_MAP_NEGATI VE_X_EXT
TEXTURE_CUBE_MAP_POSI Tl VE_Y_EXT, TEXTURE_CUBE_MAP_NEGATI VE_Y_EXT,
TEXTURE_CUBE_MAP_POSI Tl VE_Z_EXT, TEXTURE_CUBE_MAP_NEGATI VE_Z_EXT
PROXY_TEXTURE_1D, PROXY_TEXTURE_2D, PROXY_TEXTURE_3D, or
PROXY_TEXTURE_CUBE_MAP_EXT, indicating the one-di nensi onal

t wo- di nensi onal , three-dinmensional texture object, or distinct
cube map texture 2D i mage, or one-di nensional, two-dinmensional

t hr ee-di nensi onal, or cube map proxy state vector. Note that
TEXTURE_CUBE_NMAP_EXT is not a valid <target> paraneter for

Cet TexLevel Paranet er because it does not specify a particul ar cube
map face."

-- Section 6.1.4 "Texture Queries"
Change the first paragraph to read:

"It is sonewhat different fromthe other get commands; <tex>
is a synbolic value indicating which texture (or texture face in the
case of a cube map texture target nane) is to be obtained.
TEXTURE 1D i ndi cates a one-di nensional texture, TEXTURE 2D
i ndi cates a two-di mensional texture, TEXTURE 3D indicates a
t hree-di nensi onal texture, and TEXTURE CUBE MAP_PCSI Tl VE_X EXT,
TEXTURE_CUBE_MAP_NEGATI VE_X_EXT, TEXTURE_CUBE_MAP_POSI Tl VE_Y_EXT,
TEXTURE_CUBE_NMAP_NEGATI VE_Y_EXT, TEXTURE_CUBE_MAP_POSI Tl VE_Z_EXT

85

EXT_texture_cube_map

NVIDIA OpenGL Extension Specifications

and TEXTURE _CUBE_MAP_NEGATI VE _Z EXT indicate the respective face of
a cube map texture.

Additions to the GX Specification

None

Errors

I NVALI D ENUM i s generated when TexGen is called with a <coord> of Q

when <pname> i ndi cat es REFLECTI ON_MAP_EXT or

I NVALI D_VALUE i s generated when the target

NORMAL_MAP_EXT.

paranmeter to Texl mage2D

or CopyTexl mage2D i s one of the six cube map 2D i mage targets and

the wi dth and hei ght

New St at e

(table 6.12, p202) add the fol lowng entri es:

TEXTURE OUBE MP PCH TI VE X EXT

TEXTURE_ OUBE NP NEGATI VE. X EXT

TEXTURE OUBE MP PCH TIVE Y BXT

TEXTURE OUBE M NEGATI VE_ Y EXT

TEXTURE OUBE MP PCH TIVE Z BXT

TEXTURE OUBE M NEGATI \E Z EXT

Type

B
7+

nx|

nxI

nxI

nxI

nxI

nxI

(table 6.14, p204) change the entry for TEXTURE GBN MIE to:

Type Gt Gonmand

axZ5 Get TexGeni v

(the type changes from4xZ3 to 4xZ5)

New | npl ement ati on Dependent State

paraneters are not equal.

Gt Gormand Initial Value Description Sec Atribute
| sEnabl ed Fal se True i f cube map 3.8.10 texture/ enabl e
texturing i s enabl ed
Getintegerv 0 Text ure obj ect 3.8.8 texture
for TEXTURE O.BE M\P
Gt Texlnage see 3.8 positive x face 3.8 -
cube nap texture
inage at lod i
Gt Texlnage see 3.8 negative x face 3.8 -
cube nap texture
inage at lod i
Gt Texlnage see 3.8 positive y face 3.8 -
cube nap texture
inage at lod i
Gt Texlnage see 3.8 negative y face 3.8 -
cube nap texture
inage at lod i
Gt Texlnage see 3.8 positive z face 3.8 -
cube nap texture
inage at lod i
Gt Texlnage see 3.8 negative z face 3.8 -
cube nap texture
inage at lod i
Initial Value Description Sec Atribute
EYE LI NEAR Function used for 2.10.4 texture

(table 6.24, p214) add the followng entry:

7+

Type Gt Gonmand

Getlntegerv

texgen (for s, t,r,

and q)

M ni num Val ue

16

86

Atribute

Description

Mxi num cube nap
texture i nage

di nensi on

NVIDIA OpenGL Extension Specifications EXT_texture_edge_clamp

Nanme
EXT_t exture_edge_cl anp

Name Strings
GL_EXT_t exture_edge_cl anp

Ver si on
$Date: 1997/09/22 23:04:01 $ $Revision: 1.1 $

Dependenci es
SA S texture_filterd affects the definition of this extension

Overvi ew
The base OpenG. provides clanping such that the texture coordinates are
limted to exactly the range [0,1]. Wen a texture coordinate is
clanped using this algorithm the texture sanpling filter straddl es the
edge of the texture inmage, taking 1/2 its sanple values fromw thin the
texture image, and the other 1/2 fromthe texture border. It is
sonetimes desirable to clanp a texture without requiring a border, and
wi t hout using the constant border color.
Thi s extension defines a new texture clanping al gorithm
CLAMP_TO EDGE_EXT cl anps texture coordinates at all m pmap |evels such
that the texture filter never sanples a border texel. Wen used with a
NEAREST or a LINEAR filter, the color returned when clanping is derived
only fromtexels at the edge of the texture image. Wen used with
FILTER4 filters, the filter operations of CLAMP_TO EDGE EXT are defined
but don't result in a nice clanp-to-edge color.

CLAMP_TO EDGE_EXT is supported by 1, 2, and 3-di nensi onal textures
only.

| ssues

* Is the arithmetic for FILTER4 filters correct? 1Is this the right
thing to do?

New Procedures and Functions
None

New Tokens
Accepted by the <param> paraneter of TexParaneteri and TexParaneterf,
and by the <parans> paraneter of TexParameteriv and TexParaneterfv, when
their <pname> paraneter is TEXTURE_WRAP_S, TEXTURE _WRAP_T, or
TEXTURE_VWRAP_R:

CLAVP_TO EDGE_EXT 0x812F
Additions to Chapter 2 of the 1.0 Specification (OpenG Operation)

None

87

EXT_texture_edge_clamp NVIDIA OpenGL Extension Specifications

Additions to Chapter 3 of the 1.0 Specification (Rasterization)

G Specification Table 3.7 is updated as foll ows:

Nare Type Legal Val ues
TEXTURE_V\RAP_S i nt eger CLAVP, REPEAT,
CLAVP_TO EDGE_EXT
TEXTURE_VWRAP_T i nt eger CLAVP, REPEAT,
CLAVP_TO EDGE_EXT
TEXTURE_VWRAP_R i nt eger CLAVP, REPEAT,
CLAVP_TO EDGE_EXT
TEXTURE_M N_FI LTER i nt eger NEAREST, LI NEAR,

NEAREST M PMAP_NEAREST,

NEAREST M PMAP_LI NEAR,

LI NEAR M PMAP_NEAREST,

LI NEAR_M PMAP_LI NEAR,

FILTERA_SG S,

LI NEAR CLI PMAP_LI NEAR SG X
TEXTURE_MAG FI LTER i nt eger NEAREST, LI NEAR

FILTER4_SG S,

LI NEAR DETAI L_SG S,

LI NEAR DETAI L_ALPHA SG S,

LI NEAR DETAI L_COLOR SG S

LI NEAR_SHARPEN SG S,

LI NEAR_SHARPEN ALPHA SG S,

LI NEAR_SHARPEN COLOR SG S

LI NEAR LEQUAL R SG S,

LI NEAR_GEQUAL R SG S

TEXTURE_BORDER_COLOR 4 floats any 4 values in [0,1]
DETAI L_TEXTURE_LEVEL_SA S i nt eger any non-negative integer
DETAI L_TEXTURE_MODE_SG S i nt eger ADD, MODULATE

TEXTURE_M N_LOD fl oat any val ue
TEXTURE_MAX_LOD fl oat any val ue
TEXTURE_BASE_LEVEL i nt eger any non-negative integer
TEXTURE_MAX_LEVEL i nt eger any non-negative integer
GENERATE_M PVMAP_SA S bool ean TRUE or FALSE
TEXTURE_CLI PMAP_OFFSET_SG X 2 floats any 2 val ues

Table 3.7: Texture paraneters and their val ues.

CLAMP_TO EDGE_EXT texture clanping is specified by calling
TexParaneteri with <target> set to TEXTURE 1D, TEXTURE 2D, or
TEXTURE_3D, <pnane> set to TEXTURE _WRAP_S, TEXTURE WVRAP_T,

or TEXTURE WRAP_R, and <parant set to CLAMP_TO EDGE EXT.

Let [m n,max] be the range of a clanped texture coordinate, and let N
be the size of the 1D, 2D, or 3D texture inmage in the direction of
clanping. Then in all cases

mx =1 - mn
because the clanping is always symretric about the [0,1] napped range of
a texture coordinate. When used with NEAREST or LINEAR filters,
CLAMP_TO EDGE_EXT defines a m ni num cl anpi ng val ue of

mn=1/ 2*N

88

NVIDIA OpenGL Extension Specifications EXT_texture_edge_clamp

VWhen used with FILTER4 filters, CLAMP_TO EDGE_EXT defines a nininmm
cl anpi ng val ue of

mn =3/ 2%N, N> 2
mn=1/2 N <= 2

Additions to Chapter 4 of the 1.0 Specification (Per-Fragment Cperations
and the Franebuffer)

None

Additions to Chapter 5 of the 1.0 Specification (Special Functions)
None

Additions to Chapter 6 of the 1.0 Specification (State and State Requests)
None

Additions to the GLX Specification
None

Dependencies on SA S texture_filter4
If SAS texture filter4 is not inplenented, then discussions about the
interaction of filterd4 texture filters and the clanping function
described in this file are invalid, and should be ignored.

Errors
None

New St at e

Only the type information changes for these paraneters:

Get Val ue Get Conmand Type Initial Value Attrib

TEXTURE_WRAP_S Get TexParaneteriv n x Z3 REPEAT texture
TEXTURE_WRAP_T Get TexParaneteriv n x Z3 REPEAT texture
TEXTURE_WRAP_R Get TexParaneteriv n x Z3 REPEAT texture

New | npl enent ati on Dependent State

None

89

EXT _texture _env_add NVIDIA OpenGL Extension Specifications

Nanme

EXT texture_env_add
Nane Strings

GL_EXT texture_env_add
Cont act

M chael Gold, NVID A (gold '"at' nvidia.con)
Tom Frisinger, ATl (tfrisinger '"at' atitech.com

St at us
Shi ppi ng (version 1.6)
Ver si on
$Dat e: 1999/03/22 17:28:00 $ $Revision: 1.1 $
Nurber
185
Dependenci es
None
Overvi ew
New texture envi ronnent function ADD is supported with the follow ng
equati on:
Qv =CF + ¢

New function may be specified by calling TexEnv with ADD token.

New Procedures and Functi ons
None
New Tokens

Accepted by the <parans> paraneter of TexEnvf, TexEnvi, TexEnvfv, and
TexEnvfi when the <pnanme> paraneter value is G_TEXTURE ENV_MODE

ADD
Additions to Chapter 2 of the G Specification (QpenG Operation)
None

Additions to Chapter 3 of the GL Specification (Rasterization)

90

NVIDIA OpenGL Extension Specifications EXT _texture_env_add

Addi tion
and the

None

Addi tion

None

Addi tion

None

Addi tion

None

Texture Environnent

Base Texture For nat REPLACE MODULATE BLEND DECAL ADD
ALPHA Rv = Rf
Qv =G
Bv = Bf
Av = Af At
LUM NANCE Rv = Rf+Lt
Qv = O +Lt
Bv = Bf +Lt
Av = Af
LUM NANCE ALPHA Rv = Rf+Lt
Qv = O +Lt
Bv = Bf +Lt
Av = Af At
| NTENSI TY Rv = R+t
Qv = G+t
Bv = Bf+It
Av = Af +It
RGEB Rv = Rf+Rt
Qv = G+G&
Bv = Bf +Bt
Av = Af
RGBA Rv = Rf+Rt
Qv = G+G
Bv = Bf +Bt
Av = Af At

Tabl e 3.11: Texture functions.

s to Chapter 4 of the G. Specification (Per-Fragnent Operations

Framebuf f er)

s to Chapter 5 of the G Specification (Special Functions)

s to Chapter 6 of the G. Specification (State and State Requests)

s tothe GX / WAL / AG Specifications

91

EXT _texture _env_add NVIDIA OpenGL Extension Specifications

G.X Protocol
None
Errors
None
New St at e
None
New | npl ement ati on Dependent State

None

92

NVIDIA OpenGL Extension Specifications EXT_texture_env_combine

Nanme
EXT texture_env_conbi ne
Nane Strings
GL_EXT texture_env_comnbi ne
Ver si on
$Dat e: 1999/ 04/02 13:54:17 $ $Revision: 1.7 $
Nurnber
158
Dependenci es

SA texture color table affects the definition of this extension
SA X texture_scale bias affects the definition of this extension

Overvi ew

New texture environment function COVBI NE_EXT al | ows programmabl e
texture conbi ner operations, including:

REPLACE Ar g0

MODULATE Arg0o * Argl

ADD Arg0 + Argl

ADD_SI GNED_EXT Arg0 + Argl - 0.5

| NTERPOLATE_EXT Arg0o * (Arg2) + Argl * (1-Arg2)

where Arg0, Argl and Arg2 are derived from

PRI MARY_CCOLOR_EXT primary color of incom ng fragment

TEXTURE texture color of corresponding texture unit
CONSTANT _EXT texture environment constant col or
PREVI QUS_EXT result of previous texture environnment; on

texture unit 0, this maps to PRI MARY_COLOR_EXT
and Arg2 is restricted to the al pha conponent of the correspondi ng source.
In addition, the result may be scaled by 1.0, 2.0 or 4.0.
| ssues

Shoul d the explicit bias be renoved in favor of an inplcit bias as
part of a ADD_SI GNED EXT function?

- Yes. This pre-scale bias is a special case and will be treated
as such.

Shoul d the primary color of the incom ng fragment be available to
all texture environments? Currently it is only available to the
texture environment of texture unit O.

- Yes, PRI MARY_COLOR EXT has been added as an input source.

93

EXT _texture_env_combine NVIDIA OpenGL Extension Specifications

Shoul d textures fromother texture units be allowed as sources?

- No, not in the base spec. Too nmany vendors have expressed
concerns about the scalability of such functionality. This can
be added as a subsequent extension

Al of the 1.2 nodes except BLEND can be expressed in terns of
this extension. Should texture color be allowed as a source for
Arg2, so all of the 1.2 nodes can be expressed? |If so, should al
col or sources be allowed, to nmaintain orthogonality?

- No, not in the base spec. This can be added as a subsequent
ext ensi on.

New Procedures and Functi ons
None
New Tokens

Accepted by the <parans> paraneter of TexEnvf, TexEnvi, TexEnvfyv,
and TexEnviv when the <pname> paraneter value is TEXTURE_ENV_MODE

COMBI NE_EXT 0x8570

Accepted by the <pnanme> paraneter of TexEnvf, TexEnvi, TexEnvfv,
and TexEnviv when the <target> paraneter value is TEXTURE _ENV

COVBI NE_RGB_EXT 0x8571
COVBI NE_ALPHA_EXT 0x8572
SOURCEO_RGB_EXT 0x8580
SOURCE1_RGB_EXT 0x8581
SOURCE2_RGB_EXT 0x8582
SOURCEO_ALPHA_EXT 0x8588
SOURCE1_ALPHA_EXT 0x8589
SOURCE2_ALPHA_EXT 0x858A
OPERANDO_RGB_EXT 0x8590
OPERANDL_RGB_EXT 0x8591
OPERAND2_RGB_EXT 0x8592
OPERANDO_ALPHA_EXT 0x8598
OPERAND1_ALPHA_EXT 0x8599
OPERAND2_ALPHA_EXT 0Xx859A
RGB_SCALE_EXT 0x8573
ALPHA_SCALE

Accepted by the <parans> paraneter of TexEnvf, TexEnvi, TexEnvfyv,
and TexEnviv when the <pname> paraneter value is COVBI NE_RGB_EXT
or COMBI NE_ALPHA EXT

REPLACE

MODULATE

ADD

ADD_SI GNED_EXT 0x8574
| NTERPOLATE_EXT 0x8575

Accepted by the <parans> paraneter of TexEnvf, TexEnvi, TexEnvfyv,

94

NVIDIA OpenGL Extension Specifications

Addi

Addi

and TexEnviv when the <pname> paraneter value is SOURCEO_RGB _EXT,
SOURCE1_RGB_EXT, SOURCE2_RGB_EXT, SOURCEO_ALPHA EXT,
SOURCE1_ALPHA EXT, or SOURCE2_ALPHA EXT

TEXTURE

CONSTANT_EXT 0x8576
PRI MARY_CCOLOR_EXT 0x8577
PREVI QUS_EXT 0x8578

Accepted by the <parans> paraneter of TexEnvf, TexEnvi, TexEnvfyv,
and TexEnviv when the <pname> paraneter value is
OPERANDO_RGB_EXT or OPERAND1_RGB_EXT

SRC_COLOR
ONE_M NUS_SRC_COLOR
SRC_ALPHA

ONE_M NUS_SRC_ALPHA

Accepted by the <parans> paraneter of TexEnvf, TexEnvi, TexEnvfyv,
and TexEnviv when the <pname> paraneter value is
OPERANDO_ALPHA EXT or OPERAND1_ALPHA EXT

SRC_ALPHA
ONE_M NUS_SRC_ALPHA

Accepted by the <parans> paraneter of TexEnvf, TexEnvi, TexEnvfyv,
and TexEnviv when the <pname> paraneter value is
OPERAND2_RGB_EXT or OPERAND2_ALPHA EXT

SRC_ALPHA
Accepted by the <parans> paraneter of TexEnvf, TexEnvi, TexEnvfyv,

and TexEnviv when the <pname> paraneter value is RG_SCALE EXT or
ALPHA_SCALE

ROR
coo

tions to Chapter 2 of the GL Specification (OpenG Qperation)
None
tions to Chapter 3 of the GL Specification (Rasterization)

Added to subsection 3.8.9, before the paragraph describing the
state requirenents:

If the value of TEXTURE ENV_MODE is COVBI NE_ EXT, the form of the
texture function depends on the val ues of COVBI NE_RGB EXT and
COMBI NE_ALPHA EXT, according to table 3.20. The RG and ALPHA
results of the texture function are then nultiplied by the val ues
of RGB_SCALE_EXT and ALPHA SCALE, respectively. The results are
cl anped to [0, 1].

95

EXT _texture_env_combine

EXT _texture_env_combine NVIDIA OpenGL Extension Specifications

COVBI NE_RGB_EXT or

COVBlI NE_ALPHA EXT Texture Function

REPLACE Ar g0

MODULATE Arg0 * Argl

ADD Arg0 + Argl

ADD_SI GNED_EXT Arg0 + Argl - 0.5

| NTERPOLATE_EXT Arg0o * (Arg2) + Argl * (1-Arg2)

Tabl e 3.20: COVBI NE_ EXT texture functions

The argunents Arg0, Argl and Arg2 are determ ned by the val ues of
SOURCE<n>_RGB_EXT, SOURCE<n>_ALPHA EXT, OPERAND<n>_RGB_EXT and
OPERAND<n>_ALPHA EXT. 1In the following two tables, & and At are
the filtered texture RG and al pha values; Cc and Ac are the
texture environment RGB and al pha values; Cf and Af are the RGB
and al pha of the primary color of the incomng fragnent; and Cp
and Ap are the RGB and al pha values resulting fromthe previous
texture environment. On texture environnent 0, Cp and Ap are
identical to Cf and Af, respectively. The relationship is
described in tables 3.21 and 3. 22.

SOURCE<n>_ RGB_EXT OPERAND<n>_ RGB_EXT Ar gunent
TEXTURE SRC_COLOR o
ONE_M NUS_SRC_COLOR (1-Ct)
SRC_ALPHA At
ONE_M NUS_SRC_ALPHA (1-At)
CONSTANT_EXT SRC_COLOR Ce
ONE_M NUS_SRC_COLOR (1- Cc)
SRC_ALPHA Ac
ONE_M NUS_SRC_ALPHA (1- Ac)
PRI MARY_COLOR_EXT SRC_COLOR o
ONE_M NUS_SRC_COLOR (1-Cf)
SRC_ALPHA Af
ONE_M NUS_SRC_ALPHA (1- AF)
PREVI OUS_EXT SRC_COLOR Cp
ONE_M NUS_SRC_COLOR (1- Cp)
SRC_ALPHA Ap
ONE_M NUS_SRC_ALPHA (1- Ap)

Tabl e 3.21: Argunents for COVBI NE_RGB EXT functions

SOURCE<n> ALPHA EXT OPERAND<n> ALPHA EXT Argunent

TEXTURE SRC_ALPHA At
ONE_M NUS_SRC_ALPHA (1-At)
CONSTANT_EXT SRC_ALPHA Ac
ONE_M NUS_SRC_ALPHA (1- Ac)
PRI MARY_COLOR_EXT SRC_ALPHA Af
ONE_M NUS_SRC_ALPHA (1- Af)
PREVI OUS_EXT SRC_ALPHA Ap
ONE_M NUS_SRC_ALPHA (1- Ap)

Tabl e 3.22: Argunents for COVBI NE_ALPHA EXT functions

The mappi ng of texture conponents to source conponents is

96

NVIDIA OpenGL Extension Specifications EXT_texture_env_combine

summari zed in Table 3.23. In the following table, A, Lt, It, R,
& and Bt are the filtered texel val ues.

Base I nternal Format RGB Val ues Al pha Val ue
ALPHA 0O, 0, 0 At
LUM NANCE Lt, Lt, Lt 1
LUM NANCE_ALPHA Lt, Lt, Lt At
| NTENSI TY e, I1t, It It
RGB R, &, Bt 1
RGBA R, &, Bt At

Tabl e 3.23: Correspondence of texture conponents to source
conmponents for COVBI NE_RGB_EXT and COVBI NE_ALPHA EXT argunents

Additions to Chapter 4 of the G Specification (Per-Fragment Operations
and the Franebuffer)

None

Additions to Chapter 5 of the G Specification (Special Functions)
None

Additions to Chapter 6 of the GL Specification (State and State Requests)
None

Additions to the GX Specification
None

G_.X Prot ocol
None

Errors
I NVALID ENUM i s generated if <parans> val ue for COVBI NE_RGB _EXT or
COMBI NE_ALPHA EXT is not one of REPLACE, MODULATE, ADD,
ADD_SI GNED_EXT, or | NTERPOLATE_EXT.
I NVALID ENUM i s generated if <parans> val ue for SOURCEO_RGB_ EXT,
SOURCE1_RGB_EXT, SOURCE2_RGB _EXT, SOURCEO_ALPHA EXT,
SOURCE1_ALPHA EXT or SOURCE2_ALPHA EXT is not one of TEXTURE,
CONSTANT_EXT, PRI MARY_COLOR_EXT or PREVI OQUS_EXT.
I NVALID ENUM i s generated if <parans> val ue for OPERANDO RGB EXT
or OPERAND1_RGB EXT is not one of SRC COLOR, ONE_M NUS_SRC COLOR,
SRC _ALPHA or ONE_M NUS_SRC ALPHA.
I NVALID ENUM i s generated if <parans> val ue for OPERANDO_ALPHA EXT
or OPERAND1 _ALPHA EXT is not one of SRC ALPHA or
ONE_M NUS_SRC_ALPHA.

I NVALID ENUM i s generated if <parans> val ue for OPERAND2_RGB _EXT
or OPERAND2_ALPHA EXT is not SRC_ALPHA.

97

EXT _texture_env_combine NVIDIA OpenGL Extension Specifications

| NVALI D VALUE is generated if <paranms> value for RGB_SCALE EXT or
ALPHA SCALE is not one of 1.0, 2.0, or 4.0.

Dependenci es on SA _texture_col or_table
If SA _texture_color_table is inplemented, the expanded R, &,
Bt, and At values are used directly instead of the expansion
descri bed by Table 3.23.

Dependenci es on SA X _texture_scal e_bi as
If SA X texture_scale_bias is inplemented, the expanded R, &,

Bt, and At values are used directly instead of the expansion
descri bed by Table 3.23.

New St at e
Get Val ue Get Command Type Initial Value Attribute
COMBI NE_RGB_EXT Get TexEnvi v n x Z4 MODULATE texture
COMBI NE_ALPHA EXT Get TexEnviv n x Z4 MODULATE texture
SOURCEO_RGB_EXT Get TexEnvi v n x Z3 TEXTURE texture
SOURCE1_RGB_EXT Get TexEnvi v n x Z3 PREVI QUS_EXT texture
SOURCE2_RGB_EXT Get TexEnvi v n x Z3 CONSTANT_EXT texture
SOURCEO_ALPHA EXT Get TexEnviv n x Z3 TEXTURE texture
SOURCE1_ALPHA EXT Get TexEnviv n x Z3 PREVI QUS_EXT texture
SOURCE2_ALPHA EXT Get TexEnviv n x Z3 CONSTANT_EXT texture
OPERANDO_RGB_EXT Get TexEnvi v n x Z6 SRC_COLOR texture
OPERAND1_RGB_EXT Get TexEnvi v n x Z6 SRC_COLOR texture
OPERAND2_RGB_EXT Get TexEnvi v n x Z1 SRC_ALPHA texture
OPERANDO_ALPHA EXT Get TexEnviv n x Z4 SRC_ALPHA texture
OPERANDL_ALPHA EXT Get TexEnviv n x Z4 SRC_ALPHA texture
OPERAND2_ALPHA EXT Get TexEnviv n x Z1 SRC_ALPHA texture
RGB SCALE _EXT Cet TexEnvfv n x R3 1.0 texture
ALPHA SCALE Cet TexEnvfv n x R3 1.0 texture

New | npl ement ati on Dependent State

None

98

NVIDIA OpenGL Extension Specifications EXT_texture_filter_anisotropic

Nanme

EXT texture_filter_anisotropic
Nane Strings

GL_EXT texture filter_anisotropic
Noti ce

Copyri ght NvI DI A Corporation, 1999.
Ver si on

August 24, 1999

Nurnber

?7?
Dependenci es

Witten based on the wording of the Open@E 1.2 specification
Overvi ew

Texture mappi ng using Open@.'s existing m pmap texture filtering
nodes assunes that the projection of the pixel filter footprint into
texture space is a square (ie, isotropic). |In practice however, the
footprint may be Iong and narrow (ie, anisotropic). Consequently,

m pmap filtering severely blurs images on surfaces angl ed obliquely
away fromthe viewer.

Several approaches exist for inproving texture sanpling by accounting
for the anisotropic nature of the pixel filter footprint into texture
space. This extension provides a general nmechanismfor supporting
ani sotropic texturing filtering schenmes wi thout specifying a
particular formul ati on of anisotropic filtering.

The extension pernmts the OpenG. application to specify on
a per-texture object basis the maxi num degree of anisotropy to
account for in texture filtering.

Increasing a texture object's maxi num degree of anisotropy may

i nprove texture filtering but may also significantly reduce the

i npl enentation's texture filtering rate. Inplenentations are free
to clanp the specified degree of anisotropy to the inplenentation's
maxi mum supported degree of ani sotropy.

A texture's maxi num degree of anisotropy is specified i ndependent
fromthe texture's mnification and magnification filter (as
opposed to being supported as an entirely new filtering node).

| mpl enentations are free to use the specified mnification and
magni fication filter to select a particular anisotropic texture
filtering schene. For exanple, a NEAREST filter with a maxi mum
degree of anisotropy of two could be treated as a 2-tap filter that

99

EXT_texture_filter_anisotropic NVIDIA OpenGL Extension Specifications

accounts for the direction of anisotropy. |Inplenentations are also
permtted to ignore the mnification or magnification filter and
i npl enent the highest quality of anisotropic filtering possible.
Applications seeking the highest quality anisotropic filtering
avai |l abl e are advised to request a LI NEAR M PVMAP_LI NEAR mi nification
filter, a LINEAR magnification filter, and a | arge maxi num degree
of ani sotropy.

| ssues

Shoul d there be a particular anisotropic texture filtering mnification
and magni ficati on node?

RESOLUTION: NO. The maxi num degree of ani sotropy shoul d control
when ani sotropic texturing is used. Mking this orthogonal to
the mnification and magnification filtering nodes all ows these
settings to influence the anisotropic scheme used. Yes, such
an anisotropic filtering schenme exists in hardware.

What shoul d the m ni mum val ue for MAX TEXTURE MAX ANl STROPY_EXT be?

RESOLUTION: 2.0. To support this extension, at least 2 to 1
ani sotropy shoul d be supported.

Shoul d an inplenentation-defined limt for the maxi num maxi num degree of
ani sotropy be "get-able"?

RESOLUTI ON: YES. But you should not assume that a high maxi mum
maxi mum degree of ani sotropy inplies anything about texture
filtering performance or quality.
Shoul d anyt hing particul ar be said about anisotropic 3D texture filtering?
Not sure. Does the inplenentation exanple shown in the spec for
2D ani sotropic texture filtering readily extend to 3D ani sotropic
texture filtering?
New Procedures and Functi ons
None
New Tokens

Accepted by the <pnane> paraneters of GetTexParaneterfv,
Cet TexParaneteriv, TexParameterfv and TexParaneteriv:

TEXTURE_MAX_ANI SOTROPY_EXT Ox84f e

Accepted by the <pnanme> paraneters of GetBool eanv, Get Doubl ev,
Cet Fl oatv, and Getl ntegerv:

MAX_TEXTURE_MAX_ANI SOTROPY_EXT Ox84f f
Additions to Chapter 2 of the 1.2 Specification (OpenG. Qperation)

None

100

NVIDIA OpenGL Extension Specifications EXT_texture_filter_anisotropic

Additions to Chapter 3 of the 1.2 Specification (Rasterization)
-- Sections 3.8.3 "Texture Paraneters”
Add the following entry to the end of Table 3.17:

Nane Type Legal Val ues

TEXTURE_MAX ANl SOTROPY_EXT fl oat greater or equal to 1.0

-- Sections 3.8.5 "Texture Mnification" and 3.8.6 "Texture Magnification”
After the first paragraph in Section 3.8.5:

"When the texture's val ue of TEXTURE _MAX ANl SOTROPY_EXT is equal to 1.0,
the G. uses an isotropic texture filtering approach as described in

this section and Section 3.8.6. However, when the texture's val ue

of TEXTURE_NMAX ANl SOTROPY_EXT is greater than 1.0, the G inplenentation
shoul d use a texture filtering schene that accounts for a degree

of anisotropy up to the snmaller of the value of TEXTURE _MAX_ AN STROPY_EXT
or the inplenentation-defined val ue of MAX TEXTURE MAX_ AN STROPY_EXT.

The particul ar schene for anisotropic texture filtering is

i npl enent ati on dependent. Additionally, inplenentations are free
to consider the current texture mnification and magnificati on nodes
to control the specifics of the anisotropic filtering schene used.

The anisotropic texture filtering scheme may only access m prmap
levels if the minification filter is one that requires m pmaps.
Additionally, when a mnification filter is specified, the

ani sotropic texture filtering scheme may only access texture m pnmap
| evel s between the texture's values for TEXTURE BASE LEVEL and
TEXTURE_MAX LEVEL, inclusive. Inplenmentations are also recomended
to respect the values of TEXTURE _MAX LOD and TEXTURE M N LOD to
what ever extent the particular anisotropic texture filtering

schenme permts this."

The foll owi ng describes one particul ar approach to inplenenting
ani sotropic texture filtering for the 2D texturing case:

"Ani sotropic texture filtering substantially changes Section 3.8.5.
Previously a single scale factor P was detern ned based on the

pi xel's projection into texture space. Now two scale factors,

Px and Py, are conputed.

Px
Py

Pmax
Pm n

sgrt (dudx”2 + dvdx”"2)
sqgrt(dudy”2 + dvdy”2)

max(Px, Py)
m n(Px, Py)

N = m n(ceil (Pmax/ Pm n), maxAni so) ;
Landa' = | og2(Pmax/ N)

101

EXT_texture_filter_anisotropic NVIDIA OpenGL Extension Specifications

where maxAniso is the snaller of the texture's val ue of
TEXTURE_MAX_ANI SOTROPY_EXT or the inplenmentation-defined val ue of
MAX_TEXTURE_NMAX ANl SOTROPY_ EXT.

It is acceptable for inplenentation to round 'N up to the nearest
supported sanmpling rate. For exanple an inplenmentation may only
support power-of-two sanpling rates.

It is also acceptable for an inplenentation to approxi mate the idea
functions Px and Py with functions Fx and Fy subject to the foll ow ng
condi tions:

1. Fx is continuous and nonotonically increasing in |du/dx| and |dv/dx]|.
Fy is continuous and nonotonically increasing in |du/dy| and |dv/dy|.

2. max(|du/dx|,|dv/dx|} <= Fx <= |du/dx| + |dv/dx]|.
max(| du/dy|,|dv/dy|} <= Fy <= |du/dy| + |dv/dy]|.

Instead of a single sample, Tau, at (u,v,Landa), 'N locations in the

m pmap at LOD Landa, are sanpled within the texture footprint of the pixel
Thi s sum TauAni so is defined using the single sanple Tau. Wen the
texture's val ue of TEXTURE _MAX AN SOTROPHY_EXT is greater than 1.0, use
TauAni so instead of Tau to determ ne the fragnent's texture val ue.

i =N

TauAniso = 1/N\ Tau(u(x - 1/2 + i/(N+1), y), v(x - /2 + i/(N+1), y)), Px > Py
/

i=1

i =N

TauAniso = /N \ Tau(u(x, y - 1/2 + i/(N+1)), v(x, ¥y - /2 + i/(N+1))), Py >= Px
/

i=1

It is acceptable to approximate the u and v functions with equally spaced
sanples in texture space at LOD Landa:

i =N

TauAni so = 1/ N\ Tau(u(x,y)+dudx(i/(N+1)-1/2), v(x,y)+dvdx(i/(N+1)-1/2)), Px > Py
/

i=1
i =N

TauAni so = 1/ N\ Tau(u(x,y)+dudy(i/(N+1)-1/2), v(x,y)+dvdy(i/(N+1)-1/2)), Py >= Px
/

i=1

102

NVIDIA OpenGL Extension Specifications EXT_texture_filter_anisotropic

Additions to Chapter 4 of the 1.2 Specification (Per-Fragment Operations
and the Franme Buffer)

None
Additions to Chapter 5 of the 1.2 Specification (Special Functions)
None
Additions to Chapter 6 of the 1.2 Specification (State and State Requests)
None
Additions to the GX Specification
None
Errors

I NVALI D_VALUE i s generated when TexParaneter is called wth <pnanme>
of TEXTURE_NMAX_ ANl SOTROPY_EXT and a <parant val ue or val ue of what
<params> points to less than 1.0.

New St at e
(table 6.13, p203) add the entry:

Gt Val ue Type Get Gonmand Initial Value Description Sec Attribute

TEXTURE MMX AN SOTRCPY EXT R Get TexParameterfv 1.0 Maxi numdegree 3.8.5 texture
of ani sotropy

New | npl ement ati on State
(table 6.25, p215) add the entry:
Gt Val ue Type Gt Gormand MninumValue Description Sec Attribute

MAX TEXTURE MAX AN SOTROPY EXT R GetH oatv 2.0 Linit of 385 -
naxi num degr ee
of ani sotropy

103

EXT _texture lod_bias

Nanme

EXT texture_| od_bias
Nane Strings

GL_EXT texture | od bias
Not i ce

Copyri ght NvI DI A Corporation,
Ver si on

August 24, 1999
Nurnber

?2?

Dependenci es

1999.

NVIDIA OpenGL Extension Specifications

Witten based on the wording of the Open@E 1.2 specification

Affects ARB multitexture.

Overvi ew

Open@ conputes a texture |evel -of -detai

paraneter, called | anbda

in the GL specification, that determ nes which m pmap | evels and

their relative m pmap wei ghts for

use in m pmapped texture filtering.

Thi s extension provides a nmeans to bias the | anbda conputation
This bias can provide a way to bl ur
or pseudo-sharpen Qpen@.'s standard texture filtering.

by a constant (signed) val ue.

This blurring or pseudo-sharpening may be useful for special effects

(such as depth-of-field effects) or

i mage processing techni ques

(where the m prmap | evel s act as pre-downsanpl ed i nage versions).
On some inplementations, increasing the texture |od bias may inprove
texture filtering performance (at the cost of texture bluriness).

The extension mmcs functionality found in Direct 3D

| ssues

Shoul d the texture LOD bias be settable per-texture unit or

per-texture stage?

RESOLUTI ON:

Per -t exture stage.

semantics for texture | od bias.
the semantics of SA@'s SA X texture_ | od_bias extension that

This matches the D rect 3D
Note that this differs from

has the bi ases per-texture object.

This also allows the sane texture object to be used by two different
texture units for different blurring. Not sure how useful this is.

104

NVIDIA OpenGL Extension Specifications EXT _texture_lod_bias

How does EXT texture | od bias differ fromSA X texture | od bias?

EXT texture_ | od _bias adds a bias to | anbda. The

SA X texture_|l od_bi as extension changes the conputation of rho (the
l og2 of which is lanbda). The SA X extension provi des separate

bi ases in each texture dinmension. The EXT extension does not
provide an "directionality" in the LOD control.

Does the texture | od bias occur before or after the TEXTURE MAX LOD
and TEXTURE_M N_LOD cl ampi ng?

RESOLUTI ON: BEFORE. This allows the texture lod bias to still
be clanped within the max/mn | od range.

Does anyt hing special have to be said to keep the biased | anbda val ue
frombeing | ess than zero or greater than the maxi num nunber of
m pmap | evel s?

RESOLUTION: NO The existing clanmping in the specification
handl es t hese situations.

The texture lod bias is specified to be a float. In practice, what
sort of range is assuned for the texture |od bias?

RESOLUTI ON: The MAX_TEXTURE_LOD BI AS_EXT i npl enent ati on const ant
adverti ses the maxi mum absol ute val ue of the supported texture

|l od bias. The value is recommended to be at | east the maxi mum
m pmap | evel supported by the inplenentation.

The texture lod bias is specified to be a float. In practice, what
sort of precision is assuned for the texture | od bias?

RESOLUTION; This is inplenentation dependent. Presumably,
har dware woul d i npl enent the texture |l od bias as a fractional bias
but the exact fractional precision supported is inplenmentation
dependent. At least 4 fractional bits is recommended.
New Procedures and Functi ons
None
New Tokens

Accepted by the <target> paraneters of GetTexEnvfv, GetTexEnviv,
TexEnvi, TexEnvf, Texenviv, and TexEnvfv:

TEXTURE_FI LTER_CONTROL_EXT 0x8500
VWhen the <target> paranmeter of GetTexEnvfv, GetTexEnviv, TexEnvi,
TexEnvf, TexEnviv, and TexEnvfv is TEXTURE FI LTER CONTRCL_ EXT, then
t he val ue of <pname> may be:

TEXTURE_LOD Bl AS_EXT 0x8501

Accepted by the <pnanme> paraneters of GetBool eanv, Getlntegerv,
Get Fl oat v, and Get Doubl ev:

105

EXT _texture lod_bias NVIDIA OpenGL Extension Specifications

MAX_TEXTURE_LOD BI AS_EXT 0x84f d
Additions to Chapter 2 of the 1.2 Specification (OpenG. Qperation)
None
Additions to Chapter 3 of the 1.2 Specification (Rasterization)
-- Section 3.8.5 "Texture Mnification"
Change the first formula under "Scal e Factor and Level of Detail" to read:

"The choice is governed by a scale factor p(x,y), the level of detai
par anmeter | anbda(x,y), defined as

[anbda' (x,y) = log2[p(x,y)] + |odBias
where lodBias is the texture unit's (signed) texture | od bias paraneter
(as described in Section 3.8.9) clanped between the positive and negative
val ues of the inplenentation defined constant MAX TEXTURE LCD BI AS EXT.'
-- Section 3.8.9 "Texture Environnents and Texture Functions"
Change the first paragraph to read:

"The command

voi d TexEnv{if}(enumtarget, enum pnanme, T paranj;
void TexEnv{if}v(enumtarget, enum pnane, T parans);

sets paraneters of the texture environnment that specifies how texture
val ues are interepreted when texturing a fragnent or sets per-texture
unit texture filtering paraneters. The possible target paraneters

are TEXTURE_ENV or TEXTURE_FILTER CONTROL_EXT. ... \When target is
TEXTURE_ENV, the possible environment paranmeters are TEXTURE _ENV_MODE
and TEXTURE_ENV_COLOR. ... Wen target is TEXTURE FI LTER CONTROL_EXT,

the only possible texture filter paraneter is TEXTURE LOD BI AS_EXT.
TEXTURE_LOD BIAS EXT is set to a signed floating point val ue that
is used to bias the |level of detail paraneter, |anbda, as described
in Section 3.8.5."

Add a final paragraph at the end of the section

"The state required for the per-texture unit filtering paraneters
consi sts of one floating-point value."

Additions to Chapter 4 of the 1.2 Specification (Per-Fragment Operations
and the Frame Buffer)

None
Additions to Chapter 5 of the 1.2 Specification (Special Functions)

None

106

NVIDIA OpenGL Extension Specifications EXT _texture_lod_bias

Additions to Chapter 6 of the 1.2 Specification (State and State Requests)
None

Additions to the GX Specification
None

Errors

I NVALID ENUM i s generated when TexEnv is called with a <pnanme> of
TEXTURE_FI LTER_PARAVETER_EXT and t he val ue of <paranm> or what is pointed
to by <parans> is not TEXTURE LOD BI AS EXT.

New St at e

(table 6.14, p204) add the entry:
Get Val ue Type Get Command Initial Value Descri ption Sec Attribute

TEXTURE_LOD BI AS_EXT R Get TexEnvfv 0.0 Bi ases texture 3.8.9 texture
I evel of detail

(When ARB_nultitexture is supported, the TEXTURE_LOD Bl AS EXT state is per-texture unit.)
New | npl ement ati on State

(table 6.24, p214) add the follow ng entries:

Get Val ue Type Get Comrand M ni mum Val ue Description Sec Attribute
MAX_TEXTURE_LOD_BI AS_EXT R+ Get Fl oat v 4.0 Maxi mum 3.8.9 -

absol ute texture

I od bias

107

EXT_texture_object NVIDIA OpenGL Extension Specifications

Nanme

EXT_t ext ur e_obj ect
Nane Strings

GL_EXT_t exture_obj ect
Ver si on

$Dat e: 1995/10/03 05:39:56 $ $Revision: 1.27 $
Nurnber

20
Dependenci es

EXT texture3D affects the definition of this extension
Overvi ew

Thi s extension introduces named texture objects. The only way to nane
atexture in G 1.0 is by defining it as a single display list. Because
di splay lists cannot be edited, these objects are static. Yet it is

i mportant to be able to change the inages and paranmeters of a texture.

| ssues

* Shoul d the di mensions of a texture object be static once they are
changed from zero? This might sinplify the managenent of texture
menory. \What about other properties of a texture object?

No.
Reasoni ng

* Previ ous proposal s overl oaded the <target> paranmeter of many Tex
commands with texture object names, as well as the origina

enuner at ed val ues. This proposal elimnated such overl oadi ng,
choosing instead to require an application to bind a texture object,
and then operate on it through the binding reference. |If this
constraint ultimately proves to be unacceptable, we can al ways

extend the extension with additional binding points for editing and
querying only, but if we expect to do this, we mght choose to bite
the bullet and overload the <target> paraneters now.

* Commands to directly set the priority of a texture object and to
query the resident status of a texture object are included. | fee
that binding a texture object would be an unacceptabl e burden for

t hese managenent operations. These commands al so al |l ow queries and
operations on lists of texture objects, which should inprove

ef ficiency.

* GenText ur esEXT does not return a success/failure bool ean because
it should never fail in practice.

108

NVIDIA OpenGL Extension Specifications EXT_texture_object

New

Addi

Addi

Procedures and Functi ons

voi d GenText ur esEXT(sizei n
uint* textures);

voi d Del et eText ur esEXT(si zei n
const uint* textures);

voi d Bi ndText ur eEXT(enum t ar get,
uint texture);

void PrioritizeTexturesEXT(sizei n
const uint* textures,
const clanpf* priorities);
bool ean AreText uresResi dent EXT(si zei n
const uint* textures,
bool ean* resi dences);
bool ean | sText ureEXT(uint texture);
Tokens

Accepted by the <pnanme> paraneters of TexParaneteri, TexParaneterf,
TexParameteriv, TexParaneterfv, GetTexParaneteriv, and CGet TexParaneterfv:

TEXTURE_PRI ORI TY_EXT 0x8066

Accepted by the <pname> paraneters of CGet TexParaneteriv and
Get TexPar anet er f v:

TEXTURE_RESI DENT_EXT 0x8067

Accepted by the <pnanme> paraneters of GetBool eanv, Getlntegerv,
Get Fl oat v, and Get Doubl ev:

TEXTURE_1D_BI NDI NG_EXT 0x8068
TEXTURE_2D_BI NDI NG_EXT 0x8069
TEXTURE_3D_BI NDI NG_EXT 0x806A

tions to Chapter 2 of the 1.0 Specification (OpenG Operation)
None
tions to Chapter 3 of the 1.0 Specification (Rasterization)

Add the follow ng discussion to section 3.8 (Texturing). In addition
to the default textures TEXTURE 1D, TEXTURE 2D, and TEXTURE 3D EXT, it
is possible to create named 1, 2, and 3-di mensi onal texture objects.
The nane space for texture objects is the unsigned integers, with zero
reserved by the G.

A texture object is created by binding an unused name to TEXTURE 1D
TEXTURE_2D, or TEXTURE 3D EXT. This binding is acconplished by calling
Bi ndTextureEXT with <target> set to TEXTURE 1D, TEXTURE 2D, or
TEXTURE_3D EXT, and <texture> set to the nane of the new texture object.
VWen a texture object is bound to a target, the previous binding for

109

EXT_texture_object NVIDIA OpenGL Extension Specifications

that target is automatically broken

VWhen a texture object is first bound it takes the dinensionality of its
target. Thus, a texture object first bound to TEXTURE 1D is

1-di mensional ; a texture object first bound to TEXTURE 2D is
2-dinensional, and a texture object first bound to TEXTURE 3D EXT is
3-dinensional. The state of a 1-dinensional texture object

i Mmediately after it is first bound is equivalent to the state of the
default TEXTURE 1D at GL initialization. Likewi se, the state of a

2-di nensi onal or 3-dinmensional texture object imediately after it is
first bound is equivalent to the state of the default TEXTURE_2D or
TEXTURE 3D EXT at GL initialization. Subsequent bindings of a texture
obj ect have no effect on its state. The error | NVALI D OPERATION is
generated if an attenpt is made to bind a texture object to a target of
di fferent dinensionality.

VWiile a texture object is bound, GL operations on the target to which it
is bound affect the bound texture object, and queries of the target to
which it is bound return state fromthe bound texture object. |If
texture mapping of the dinensionality of the target to which a texture
object is bound is active, the bound texture object is used.

By default when an Qpen@ context is created, TEXTURE 1D, TEXTURE_2D,
and TEXTURE 3D EXT have 1, 2, and 3-di nensional textures associ ated
with them In order that access to these default textures not be
lost, this extension treats them as though their names were all zero.
Thus the default 1-dinmensional texture is operated on, queried, and
applied as TEXTURE 1D while zero is bound to TEXTURE 1D. Likew se,
the default 2-dinensional texture is operated on, queried, and applied
as TEXTURE 2D while zero is bound to TEXTURE 2D, and the default
3-dinensional texture is operated on, queried, and applied as
TEXTURE 3D EXT while zero is bound to TEXTURE 3D EXT.

Texture objects are deleted by calling Del eteTexturesEXT with <textures>
pointing to a list of <n> nanes of texture object to be deleted. After
a texture object is deleted, it has no contents or dinensionality, and
its nanme is freed. |If a texture object that is currently bound is

del eted, the binding reverts to zero. DeleteTexturesEXT ignores nanes
that do not correspond to textures objects, including zero.

GenText ur esEXT returns <n> texture object names in <textures>. These
nanes are chosen in an unspecified manner, the only condition being that
only nanes that were not in use inmediately prior to the call to

GenText ureseEXT are considered. Names returned by GenTexturesEXT are

mar ked as used (so that they are not returned by subsequent calls to
GenText uresEXT), but they are associated with a texture object only
after they are first bound (just as if the nanme were unused).

An inpl enentati on may choose to establish a working set of texture

obj ects on which binding operations are perforned with higher
performance. A texture object that is currently being treated as a
part of the working set is said to be resident. AreTexturesResident EXT
returns TRUE if all of the <n> texture objects naned in <textures> are

resident, FALSE otherwise. |If FALSE is returned, the residence of each
texture object is returned in <residences> (Qherw se the contents of
the <residences> array are not changed. |If any of the nanmes in

<textures> is not the name of a texture object, FALSE is returned, the

110

NVIDIA OpenGL Extension Specifications EXT_texture_object

Addi
and

Addi

Addi

error INVALID VALUE is generated, and the contents of <residences> are
i ndeterm nate. The resident status of a single bound texture object
can al so be queried by calling GetTexParaneteriv or Get TexParaneterfv
with <target> set to the target to which the texture object is bound,
and <pnanme> set to TEXTURE RESI DENT_EXT. This is the only way that the
resident status of a default texture can be queried.

Applications guide the Open@G inplenmentation in determ ning which
texture objects should be resident by specifying a priority for each
texture object. PrioritizeTexturesEXT sets the priorities of the <n>
texture objects in <textures> to the values in <priorities> Each
priority value is clanped to the range [0.0, 1.0] before it is

assigned. Zero indicates the |lowest priority, and hence the | east

i kelihood of being resident. One indicates the highest priority, and
hence the greatest |ikelihood of being resident. The priority of a

si ngl e bound texture object can al so be changed by calling
TexParanmeteri, TexParaneterf, TexParaneteriv, or TexParaneterfv with
<target> set to the target to which the texture object is bound, <pnane>
set to TEXTURE PRI ORI TY_EXT, and <paranP or <parans> specifying the new
priority value (which is clanped to [0.0,1.0] before being assigned).
This is the only way that the priority of a default texture can be
specified. (PrioritizeTexturesEXT silently ignores attenpts to
prioritize nontextures, and texture zero.)

tions to Chapter 4 of the 1.0 Specification (Per-Fragnent Operations
the Frame Buffer)

None
tions to Chapter 5 of the 1.0 Specification (Special Functions)

Bi ndText ureEXT and PrioritizeTextureskEXT are included in display lists.
Al'l other commands defined by this extension are not included in display
lists.

tions to Chapter 6 of the 1.0 Specification (State and State Requests)

| sTextureEXT returns TRUE if <texture> is the nane of a valid texture
object. |If <texture>is zero, or is a non-zero value that is not the
nane of a texture object, or if an error condition occurs, |sTextureEXT
returns FALSE

Because the query val ues of TEXTURE 1D, TEXTURE 2D, and TEXTURE 3D _EXT
are already defined as bool eans indicating whether these textures are
enabl ed or disabl ed, another mechanismis required to query the

bi ndi ng associated with each of these texture targets. The nane

of the texture object currently bound to TEXTURE 1D is returned in
<params> when Cetlntegerv is called with <pnane> set to
TEXTURE_1D BI NDI NG EXT. If no texture object is currently bound to
TEXTURE_1D, zero is returned. Likew se, the name of the texture object
bound to TEXTURE 2D or TEXTURE 3D EXT is returned in <parans> when
Cetlntegerv is called with <pname> set to TEXTURE_ 2D BI NDI NG EXT or
TEXTURE_3D BI NDI NG EXT. If no texture object is currently bound to
TEXTURE 2D or to TEXTURE 3D EXT, zero is returned.

A texture object conprises the image arrays, priority, border color,
filter nodes, and wap nodes that are associated with that object. Mre

111

EXT_texture_object NVIDIA OpenGL Extension Specifications

explicitly, the state |ist

TEXTURE,
TEXTURE_PRI ORI TY_EXT
TEXTURE_RED Sl ZE,
TEXTURE_GREEN_SI ZE,
TEXTURE_BLUE_SI ZE,
TEXTURE_ALPHA_SI ZE,
TEXTURE_LUM NANCE_SI ZE,
TEXTURE_| NTENSI TY_SI ZE,
TEXTURE_W DTH,
TEXTURE_HEI GHT,
TEXTURE_DEPTH_EXT,
TEXTURE_BORDER,
TEXTURE_COMPONENTS,
TEXTURE_BORDER COLCR,
TEXTURE_M N_FI LTER,
TEXTURE_MAG_FI LTER,
TEXTURE_WRAP_S,
TEXTURE_WRAP_T,
TEXTURE_WRAP_R_EXT

conposes a single texture object.

VWhen PushAttrib is called with TEXTURE BI T enabl ed, the priorities,
border colors, filter nodes, and wap nodes of the currently bound
texture objects are pushed, as well as the current texture bindings and
enabl es. When an attribute set that includes texture information is
popped, the bindings and enables are first restored to their pushed

val ues, then the bound texture objects have their priorities, border
colors, filter nodes, and wap nodes restored to their pushed val ues.

Additions to the GX Specification
Texture objects are shared between G.X rendering contexts if and only
if the rendering contexts share display lists. No change is made to
the GLX API.

GLX Protocol

Si x new GL commands are added.

The followi ng rendering command is sent to the server as part of a
gl XRender request:

Bi ndText ur eEXT

2 12 renderi ng command | ength
2 4117 renderi ng command opcode
4 ENUM t ar get

4 CARD32 texture

The foll owi ng renderi ng command can be sent to the server as part of a
gl XRender request or as part of a gl XRender Large request:

112

NVIDIA OpenGL Extension Specifications

PrioritizeTexturesEXT

EXT_texture_object

2 8+(n*8) renderi ng command | ength
2 4118 renderi ng command opcode
4 | NT32 n

n*4 LI STof CARD32 textures

n*4 LI STof FLOAT32 priorities

If the command is encoded in a gl XRender Large request,

t he

command opcode and command | ength fields above are expanded to

4 bytes each:

4 12+(n*8) renderi ng command | ength
4 4118 renderi ng command opcode

The remai ni ng commands are non-renderi ng conmands. These conmands are
sent separately (i.e., not as part of a gl XRender or gl XRender Lar ge

request), using either the gl XVendorPrivate request or the

gl XVendor Pri vateWthReply request:

Del et eText ur esEXT

1 CARDS opcode (X assi gned)

1 16 GLX opcode (gl XVendor Pri vat e)
2 4+n request length

4 12 vendor specific opcode
4 GLX_CONTEXT_TAG context tag

4 I NT32 n

n*4 CARD32 textures
GenText ur esEXT

1 CARDS opcode (X assi gned)

1 17 GLX opcode (gl XVendor Pri vat eWt hReply)
2 4 request length

4 13 vendor specific opcode
4 GLX_CONTEXT_TAG context tag

4 I NT32 n

=>

1 1 reply

1 unused

2 CARD16 seqguence nunber

4 n reply length

24 unused

4*n LI STof CARD32 textures

113

EXT_texture_object

Ar eText ur esResi dent EXT

NVIDIA OpenGL Extension Specifications

1 CARDS opcode (X assigned)
1 17 GL.X opcode (gl XVendor PrivateWt hReply)
2 4+n request length
4 11 vendor specific opcode
4 GLX_CONTEXT_TAG context tag
4 I NT32 n
4* LI STof CARD32 textures
=>
1 1 reply
1 unused
2 CARD16 seguence nunber
4 (n+tp)/4 reply length
4 BOOL32 return_val ue
20 unused
n LI STof BOOL resi dences
p unused, p=pad(n)
| sText ur eEXT
1 CARDS opcode (X assi gned)
1 17 GLX opcode (gl XVendor Privat eWt hReply)
2 4 request length
4 14 vendor specific opcode
4 GLX_CONTEXT_TAG context tag
4 CARD32 textures
=>
1 1 reply
1 unused
2 CARD16 seqguence nunber
4 0 reply length
4 BOOL32 return_val ue
20 unused

Dependenci es on EXT_t exture3D

If EXT_texture3D is not supported,

then all references to 3D textures

in this specification are invalid.

Errors

I NVALI D VALUE is generated if GenTexturesEXT paraneter <n> is negative.

I NVALI D VALUE is generated if Del eteTexturesEXT paraneter <n> is

negati ve.

I NVALID ENUM i s generated if Bi ndTextureEXT paranmeter <target> is not

TEXTURE_1D, TEXTURE_2D, or

TEXTURE_3D_EXT.

| NVALI D_OPERATI ON i s generated if Bi ndTextureEXT paranmeter <target> is
TEXTURE_1D, and parameter <texture> is the nane of a 2-di mensional or

3-di nensi onal

texture object.

| NVALI D_OPERATI ON i s generated if Bi ndTextureEXT paranmeter <target> is
TEXTURE_2D, and parameter <texture> is the nane of a 1-dinmensional or
3-di nensi onal texture object.

I NVALI D_OPERATI ON i s generated if Bi ndTextureEXT paranmeter <target> is

114

NVIDIA OpenGL Extension Specifications

EXT_texture_object

TEXTURE_3D EXT, and paraneter <texture> is the name of a 1-di nensional

or

2-di nensi onal

texture object.

I NVALI D VALUE is generated if PrioritizeTexturesEXT paramneter <n>

negati ve.

I NVALI D VALUE is generated if AreTexturesResident EXT paraneter <n>

i s negative.

I NVALI D VALUE i s generated by AreTexturesResidentEXT if any of the

nanes in <textures> is zero,

or

is not the nane of a texture.

| NVALI D_OPERATION i s generated if any of the conmands defined in this
extension i s executed between the execution of Begin and the
correspondi ng execution of End.

New St at e

TEXTURE_ GOMPONENTS (1D and 2D)
TEXTURE_ GOMPONENTS (3D and 4D)

TEXTURE BORER CAL(R
TEXTURE MN FI LTER
TEXTURE MG FI LTER
TEXTURE V2P S
TEXTURE VRP T
TEXTURE VRAP R EXT
TEXTURE VRP QS3 S

| sEnabl ed

| sEnabl ed

| sEnabl ed

Getl ntegerv

Getl ntegerv

Getl ntegerv

Get TexPar anet er f v

A eText ur esResi dent EXT

Get Tex!| nage
Get TexLevel Parangt eri v
Get TexLevel Parangt eri v
Get TexLevel Parangt eri v
Get TexLevel Parangteri v
Get TexLevel Parangt eri v
Get TexLevel Parangt eri v
Get TexLevel Parangt eri v
Get TexLevel Parangt eri v
Get TexLevel Parangt eri v
Get TexLevel Parangt eri v
Get TexLevel Parangt eri v
Get TexLevel Parangteri v
Get TexLevel Parangt eri v
Get TexParangeteriv n x
Get TexPar anet eri v
Get TexPar anet eri v
Get TexPar anet eri v
Get TexPar anet eri v
Get TexPar anet eri v
Get TexPar anet eri v

5 33353535
X X X X X X

New | npl ement ati on Dependent State

None

NNNNBENO

Type

B

B

B

Z+

Z+

Z+

n x zZ+
nxB

n x levels
n x levels
n x levels
n x levels
n x levels
n x levels
n x levels
n x levels
n x levels
n x levels
n x levels
n x levels
n x level s
n x levels

115

x|

X Z+
X Z+
X Z+
X Z+
X Z+
X Z+
X Z+
X Z+
X Z+
X Z+
X Z+
X 242
X Z38

Initial Value Atribute
FALSE texture/ enabl e
FALSE texture/ enabl e
FALSE texture/ enabl e
0 texture

0 texture

0 texture

1 texture
unknown -

nul | -

0 -

0 -

0 -

0 -

0 -

0 -

0 -

0 -

0 -

0 -

0 -

1 -

LUM NANCE -

0 0 0 O texture
NEAREST M PVAP LINEAR texture

LI NEAR texture
REPEAT texture
REPEAT texture
REPEAT texture
REPEAT texture

EXT_vertex_array NVIDIA OpenGL Extension Specifications

Nanme
EXT_vertex_array

Nane Strings
GL_EXT _vertex_array

Ver si on
$Dat e: 1995/ 10/ 03 05:39:58 $ $Revision: 1.16 $ FINAL

Nurnber
30

Dependenci es
None

Overvi ew
This extension adds the ability to specify nultiple geonetric primtives
with very few subroutine calls. Instead of calling an OpenG. procedure
to pass each individual vertex, normal, or color, separate arrays
of vertexes, normals, and colors are prespecified, and are used to
define a sequence of primtives (all of the sane type) when a single
call is made to DrawArrayseEXT. A stride nechanismis provided so that
an application can choose to keep all vertex data staggered in a
single array, or sparsely in separate arrays. Single-array storage

may optim ze performance on sone inpl ementations.

Thi s extension al so supports the rendering of individual array el enents,
each specified as an index into the enabl ed arrays.

| ssues
* Shoul d arrays for material paranmeters be provided? |If so, how?

A No. Let's leave this to a separate extension, and keep this
extensi on | ean.

* Shoul d a FORTRAN i nterface be specified in this docunment?

* It may not be possible to inplenent GetPointervEXT in FORTRAN. |f
not, should we elimnate it fromthis proposal ?

A: Leave it in.

* Shoul d a stride be specified by DrawArraysEXT which, if non-zero
woul d override the strides specified for the individual arrays?

This mght inprove the efficiency of single-array transfers.

A: No, it's not worth the effort and conplexity.

* Shoul d entry points for byte vertexes, byte indexes, and byte
texture coordi nates be added in this extension?

116

NVIDIA OpenGL Extension Specifications EXT_vertex_array

A: No, do this in a separate extension, which defines byte support
for arrays and for the current procedural interface.

* Shoul d support for meshes (not strips) of rectangles be provided?

A No. If this is necessary, define a separate quad_nesh extension
t hat supports both i medi ate node and arrays. (Add QUAD MESH EXT
as an token accepted by Begin and DrawArrayseEXT. Add
QuadMeshLengt hEXT to specify the I ength of the nesh.)

Reasoni ng

* Dr awAr raysEXT requires that VERTEX_ARRAY_EXT be enabl ed so that
future extensions can support evaluation as well as direct
specification of vertex coordinates.

* Thi s extension does not support evaluation. It could be extended
to provide such support by adding arrays of points to be eval uated,

and by adding enables to indicate that the arrays are to be

evaluated. | think we may choose to add an array version of

Eval Mesh, rather than extending the operation of DrawArraysEXT,

so |I'd rather wait on this one.

* <size> is specified before <type> to match the order of the
information in imedi ate node commands, such as Vertex3f.
(first 3, then f)

* It seens reasonable to allow attribute values to be undefined after
Dr awAr raysEXT executes. This avoids inplenmentation overhead in

the case where an inconplete primtive is specified, and will allow
optim zation on multiprocessor systens. | don't expect this to be

a burden to programmers.

* It is not an error to call VertexPointer EXT, Nornal Pointer EXT
Col or Poi nt er EXT, | ndexPoi nter EXT, TexCoor dPoi nt er EXT,

or EdgeFl agPoi nt er EXT between the execution of Begin and the
correspondi ng execution of End. Because these comrands wil |
typically be inplenmented on the client side with no protocol
testing for between-Begin-End status requires that the client

track this state, or that a round trip be nade. Neither is

desi rabl e.

* Arrays are enabl ed and disabled individually, rather than with a
singl e mask paraneter, for two reasons. First, we have had trouble
allocating bits in masks, so elimnating a nmask elim nates potenti al
trouble down the road. W may eventually require a | arger nunber of
array types than there are bits in a mask. Second, making the

enables into state elimnates a paraneter in ArrayEl ement EXT, and

may allow it to execute nore efficiently. O course this state

nodel may result in progranming errors, but OpenG is full of such
hazards anyway!

* ArrayEl enent EXT is provided to support applications that construct
primtives by indexing vertex data, rather than by stream ng through
arrays of data in first-to-last order. Because each call specifies
only a single vertex, it is possible for an application to explicitly

117

EXT_vertex_array NVIDIA OpenGL Extension Specifications

specify per-primtive attributes, such as a single normal per
i ndi vidual triangle.

* The <count> paraneters are added to the *Poi nter EXT commands to
all ow i npl ementations to cache array data, and in particular to

cache the transformed results of array data that are rendered
repeatedly by ArrayEl ement EXT. |Inplenmentations that do not w sh

to perform such caching can ignore the <count> paraneter.

* The <first> paraneter of DrawArraysEXT allows a single set of
arrays to be used repeatedly, possibly inproving performance.

New Procedures and Functi ons
void ArrayEl enent EXT(int i);

voi d Dr awArr aysEXT(enum node,
int first,
si zei count);

voi d VertexPoi nter EXT(i nt size,
enum t ype,
sizei stride
si zei count,
const voi d* pointer);

voi d Nor mal Poi nt er EXT(enum t ype,
sizei stride
si zei count,
const voi d* pointer);

voi d Col or Poi nt er EXT(i nt size,
enum t ype,
sizei stride
si zei count,
const voi d* pointer);

voi d | ndexPoi nt er EXT(enum t ype,
sizei stride
si zei count,
const voi d* pointer);

voi d TexCoor dPoi nt er EXT(i nt si ze,
enum t ype,
sizei stride
si zei count,
const voi d* pointer);

voi d EdgeFl agPoi nt er EXT(si zei stride
si zei count,
const Bool ean* pointer);

voi d CGet Poi nt er vEXT(enum pnane,
voi d** parans);

118

NVIDIA OpenGL Extension Specifications EXT_vertex_array

New Tokens

Accepted by the <cap> paraneter of Enable, D sable, and |IsEnabled, and
by the <pname> paraneter of GCetBool eanv, Getlntegerv, GCetFloatv, and

Cet Doubl ev:

VERTEX_ARRAY_EXT 0x8074
NORMAL _ARRAY EXT 0x8075
COLOR_ARRAY_EXT 0x8076
| NDEX_ ARRAY EXT 0x8077
TEXTURE_COCORD ARRAY EXT 0x8078
EDGE _FLAG ARRAY_ EXT 0x8079

Accepted by the <type> parameter of VertexPointer EXT, Normnmal Poi nter EXT,
Col or Poi nt er EXT, | ndexPoi nt er EXT, and TexCoor dPoi nt er EXT:

DOUBLE_EXT 0x140A

Accepted by the <pnanme> paraneter of GetBool eanv, Getlntegerv,
Get Fl oat v, and Get Doubl ev:

VERTEX_ARRAY_S| ZE_EXT 0x807A
VERTEX_ARRAY_TYPE_EXT 0x807B
VERTEX_ARRAY_STRI DE_EXT 0x807C
VERTEX_ARRAY_COUNT_EXT 0x807D
NORMAL_ARRAY_TYPE_EXT 0x807E
NORMAL_ARRAY_STRI DE_EXT 0x807F
NORMAL_ARRAY_COUNT _EXT 0x8080
COLOR_ARRAY_S| ZE_EXT 0x8081
COLOR_ARRAY_TYPE_EXT 0x8082
COLOR_ARRAY_STRI DE_EXT 0x8083
COLOR_ARRAY_COUNT_EXT 0x8084
| NDEX_ARRAY_TYPE_EXT 0x8085
| NDEX_ARRAY_STRI DE_EXT 0x8086
| NDEX_ARRAY_COUNT_EXT 0x8087

TEXTURE_COORD ARRAY_S| ZE_EXT 0x8088
TEXTURE_COORD_ARRAY_TYPE_EXT 0x8089
TEXTURE_COORD_ARRAY_STRI DE_EXT Ox808A
TEXTURE_COORD _ARRAY_COUNT_EXT 0x808B
EDGE_FLAG_ARRAY_STRI DE_EXT 0x808C
EDGE_FLAG_ARRAY_COUNT_EXT 0x808D

Accepted by the <pnanme> paraneter of GetPointerVvEXT:

VERTEX_ARRAY POl NTER_EXT 0x808E
NORMAL_ARRAY_PO NTER_EXT 0x808F
COLOR_ARRAY_ POl NTER_EXT 0x8090
| NDEX_ARRAY_PO NTER_EXT 0x8091

TEXTURE_COORD_ARRAY_ POl NTER_EXT 0x8092
EDGE_FLAG ARRAY PO NTER EXT 0x8093

Additions to Chapter 2 of the 1.0 Specification (OpenG. Qperation)

Array Specification

I ndi vi dual array pointers and associ ated data are maintai ned for an

119

EXT_vertex_array NVIDIA OpenGL Extension Specifications

array of vertexes, an array of normals, an array of colors, an array

of color indexes, an array of texture coordinates, and an array of edge
flags. The data associated with each array specify the data type of

the values in the array, the nunber of values per elenent in the array
(e.g. vertexes of 2, 3, or 4 coordinates), the byte stride from one
array elenent to the next, and the nunber of elenents (counting from
the first) that are static. Static elenments nay be nodified by the
application, but once they are nodified, the application nust explicitly
respecify the array before using it for any rendering. When an array is
specified, the pointer and associ ated data are saved as client-side
state, and static elenents may be cached by the inplenentation. Non-
static (dynamc) elements are never accessed until ArrayEl enment EXT or

Dr awAr raysEXT i s issued.

Vert exPoi nt er EXT specifies the |ocation and data format of an array

of vertex coordinates. <pointer> specifies a pointer to the first
coordi nate of the first vertex in the array. <type> specifies the data
type of each coordinate in the array, and rmust be one of SHORT, |NT,
FLOAT, or DOUBLE_EXT, inplying G. data types short, int, float, and
doubl e respectively. <size> specifies the nunber of coordi nates per
vertex, and nmust be 2, 3, or 4. <stride> specifies the byte offset

bet ween pointers to consecutive vertexes. |If <stride>is zero, the
vertex data are understood to be tightly packed in the array. <count>
speci fies the nunber of vertexes, counting fromthe first, that are
static.

Nor mal Poi nt er EXT specifies the |ocation and data format of an array
of normals. <pointer> specifies a pointer to the first coordi nate

of the first normal in the array. <type> specifies the data type

of each coordinate in the array, and nmust be one of BYTE, SHORT, |NT,
FLOAT, or DOUBLE _EXT, inplying G. data types byte, short, int, float,

and doubl e respectively. It is understood that each normal conprises
three coordinates. <stride> specifies the byte offset between
pointers to consecutive normals. |If <stride> is zero, the nornal

data are understood to be tightly packed in the array. <count>
speci fies the nunber of normals, counting fromthe first, that are
static.

Col or Poi nt er EXT specifies the |ocation and data format of an array

of col or conmponents. <pointer> specifies a pointer to the first
conmponent of the first color element in the array. <type> specifies the
data type of each conponent in the array, and nust be one of BYTE

UNSI GNED_BYTE, SHORT, UNSI GNED_SHORT, | NT, UNSI GNED | NT, FLOAT, or
DOUBLE_EXT, inplying G. data types byte, ubyte, short, ushort, int,
uint, float, and double respectively. <size> specifies the nunber of
conponents per color, and nmust be 3 or 4. <stride> specifies the byte
of fset between pointers to consecutive colors. |If <stride>is zero
the color data are understood to be tightly packed in the array.
<count > specifies the nunber of colors, counting fromthe first, that
are static.

I ndexPoi nt er EXT specifies the |ocation and data format of an array

of col or indexes. <pointer> specifies a pointer to the first index in
the array. <type> specifies the data type of each index in the

array, and nmust be one of SHORT, |INT, FLOAT, or DOUBLE_EXT, inplying
G data types short, int, float, and double respectively. <stride>
specifies the byte offset between pointers to consecutive indexes. |If

120

NVIDIA OpenGL Extension Specifications

<stride> is zero
in the array.
the first, that are static.

EXT_vertex_array

the index data are understood to be tightly packed
<count > specifies the nunber of

i ndexes, counting from

TexCoor dPoi nt er EXT specifies the | ocation and data format of an array

of texture coordi nates.

FLOAT, or DOUBLE_EXT,
doubl e respectively.
el ement, and nust be 1, 2, 3,

zero,
array.
counting fromthe first,

i nplying GL data types short,
<si ze> specifies the nunber of coordinates per
or
bet ween pointers to consecutive el enments of coordinates.

<pointer> specifies a pointer to the first
coordi nate of the first el enent
type of each coordinate in the array,

in the array.
and nust

<type> specifies the data
be one of SHORT, | NT,
int, float, and

4. <stride> specifies the byte offset
If <stride>is

the coordinate data are understood to be tightly packed in the
<count > specifies the nunmber of texture coordinate el ements,
that are static.

EdgeFl agPoi nt er EXT specifies the |location and data format of an array

of bool ean edge fl ags.
in the array.
consecutive edge fl ags.

nunber of edge fl ags,

<pointer> specifies a pointer to the first flag
<stride> specifies the byte offset
If <stride> is zero,
understood to be tightly packed in the array.
counting fromthe first,

bet ween pointers to

the edge flag data are

<count > specifies the

that are static.

The tabl e bel ow sumari zes the sizes and data types accepted (or
understood inplicitly) by each of the six pointer-specification comuands.

Comrand Si zes
Ver t exPoi nt er EXT 2,3,4
Nor mal Poi nt er EXT 3

Col or Poi nt er EXT 3,4

| ndexPoi nt er EXT 1
TexCoor dPoi nt er EXT ,2,3,4

EdgeFl agPoi nt er EXT

Rendering the Arrays

By default al
An i ndi vi dual
t abl e bel ow:

Array Specification Comrand
Ver t exPoi nt er EXT

Nor mal Poi nt er EXT

Col or Poi nt er EXT

| ndexPoi nt er EXT

TexCoor dPoi nt er EXT
EdgeFl agPoi nt er EXT

VWhen ArrayEl enent EXT is call ed,
and attribute data taken fromlocation <i> of the enabled arrays.

the arrays are di sabled, nmeaning that they wll
be accessed when either ArrayEl ement EXT or

Types

short, int, float, double

byte, short, int, float, double
byte, short, int, float, double,
ubyte, ushort, uint

short, int, float, double

short, int, float, double

bool ean

not
DrawAr rayseEXT is call ed.

array is enabled or disabled by calling Enable or
Di sable with <cap> set to appropriate val ue,

as specified in the

Enabl e Token

TEXTURE_COORD ARRAY EXT
EDGE_FLAG _ARRAY_EXT

a single vertex is drawn, using vertex
The

semantics of ArrayEl ement EXT are defined in the C code bel ow

121

EXT_vertex_array NVIDIA OpenGL Extension Specifications

void ArrayEl enent EXT (int i) {

byt e* p;
i f (NORMAL_ARRAY_EXT) {
if (normal _stride == 0)
p = (byte*)normal _pointer + i * 3 * sizeof(normal _type);
el se

p = (byte*)normal _pointer + i * normal _stride;
Nor mal 3<nor nal _type>v ((nornal _type*)p);
}
i f (COLOR_ARRAY_EXT) {
if (color_stride == 0)
p = (byte*)col or_pointer +
i * color_size * sizeof(color_type);
el se
p = (byte*)color_pointer + i * color_stride
Col or <col or _si ze><col or _type>v ((col or_type*)p);
}
i f (1 NDEX_ARRAY_EXT) {
if (index_stride == 0)
p = (byte*)index_pointer + i * sizeof(index_type);
el se
p = (byte*)index_pointer + i * index_stride;
I ndex<i ndex_type>v ((index_type*)p);
}
i f (TEXTURE_COORD ARRAY_EXT) {
if (texcoord_stride == 0)
p = (byte*)texcoord_pointer +
i * texcoord_size * sizeof (texcoord_type);
el se
p = (byte*)texcoord_pointer + i * texcoord_stride;
TexCoor d<t excoor d_si ze><t excoord_t ype>v ((texcoord_type*)p);
}
i f (EDGE_FLAG ARRAY_EXT) {
if (edgeflag_stride == 0)
p = (byte*)edgeflag pointer + i * sizeof (bool ean);
el se
p = (byte*)edgeflag pointer + i * edgeflag_stride;
EdgeFl agv ((bool ean*) p);

}
i f (VERTEX_ARRAY_EXT) {
if (vertex_stride == 0)
p = (byte*)vertex_pointer +
i * vertex_size * sizeof(vertex_type);
el se
p = (byte*)vertex_pointer + i * vertex_stride
Vertex<vertex_size><vertex_type>v ((vertex_type*)p);
}
}

ArrayEl enent EXT executes even if VERTEX ARRAY EXT is not enabled. No
drawi ng occurs in this case, but the attributes corresponding to
enabl ed arrays are nodified.

VWhen DrawArrayseXT is called, <count> sequential elenents from each

enabl ed array are used to construct a sequence of geonetric primtives,
beginning with el enent <first> <npde> specifies what kind of

122

NVIDIA OpenGL Extension Specifications EXT_vertex_array

primtives are constructed, and how the array elenents are used to
construct these primtives. Accepted values for <node> are PO NTS,
LINE_STRI P, LINE_LOOP, LINES, TRI ANGLE_STRI P, TRI ANGLE_FAN, TRI ANGLES
QUAD STRIP, QUADS, and POLYGON. |f VERTEX ARRAY EXT is not enabl ed, no
geonetric primtives are generated

The semantics of DrawArraysEXT are defined in the G code bel ow
voi d DrawArraysEXT(enum node, int first, sizei count) {
int i;
if (count < 0)
/* generate | NVALI D VALUE error and abort */

el se {
Begi n (node);
for (i=0; i < count; i++)
ArrayEl enent EXT(first + i);
End ();
}

}

The ways in which the execution of DrawArraysEXT differs fromthe
semantics indicated in the pseudo-code above are:

1. Vertex attributes that are nodified by DrawArraysEXT have an
unspeci fied value after DrawArrayseEXT returns. For exanmple, if
COLOR_ARRAY _EXT is enabled, the value of the current color is
undefined after DrawArraysEXT executes. Attributes that aren't
nodi fied remain well defined.

2. Operation of DrawArraysEXT is atomic with respect to error
generation. |If an error is generated, no other operations take
pl ace.

Although it is not an error to respecify an array between the execution
of Begin and the correspondi ng execution of End, the result of such
respecification is undefined. Static array data may be read and cached
by the inplenentation at any tine. |If static array data are nodified by
the application, the results of any subsequently issued ArrayEl enment EXT
or DrawArraysEXT comands are undefi ned

Additions to Chapter 3 of the 1.0 Specification (Rasterization)
None

Additions to Chapter 4 of the 1.0 Specification (Per-Fragment Operations
and the Franme buffer)

None
Additions to Chapter 5 of the 1.0 Specification (Special Functions)

ArrayEl enent EXT and DrawArraysEXT are included in display lists.
VWhen either command is entered into a display list, the necessary
array data (determ ned by the array pointers and enables) is also
entered into the display list. Because the array pointers and
enables are client side state, their values affect display lists
when the [ists are created, not when the lists are executed.

123

EXT_vertex_array NVIDIA OpenGL Extension Specifications

Array specification commands VertexPoi nt er EXT, Normal Poi nt er EXT,
Col or Poi nt er EXT, | ndexPoi nt er EXT, TexCoor dPoi nt er EXT, and
EdgeFl agPoi nt er EXT specify client side state, and are therefore
not included in display lists. Likew se Enable and D sabl e, when
called with <cap> set to VERTEX ARRAY_EXT, NORMAL_ARRAY_EXT,
COLOR_ARRAY_EXT, | NDEX_ARRAY_EXT, TEXTURE_COCRD ARRAY_EXT, or
EDGE_FLAG ARRAY_EXT, are not included in display lists.

CGet Poi nter vEXT returns state information, and so is not included
in display lists.

Additions to Chapter 6 of the 1.0 Specification (State and State Requests)

CGet Poi nter vEXT returns in <param> the array pointer val ue specified
by <pnane>. Accepted val ues for <pname> are VERTEX ARRAY_PO NTER_EXT,
NORMAL _ARRAY_PO NTER_EXT, COLOR_ARRAY_PO NTER_EXT,

| NDEX_ARRAY_PO NTER_EXT, TEXTURE_COORD ARRAY_PO NTER EXT,

and EDGE_FLAG ARRAY_PO NTER_EXT.

Al array data are client side state, and are not saved or restored
by PushAttrib and PopAttrib.

Additions to the GX Specification
None
G.X Protocol

A new rendering command is added; it can be sent to the server as part of a
gl XRender request or as part of a gl XRenderLarge request:

The DrawArraysEXT conmand consists of three sections, in the follow ng order:
(1) header information, (2) a list of array information, containing the type
and size of the array values for each enabled array and (3) a list of vertex
data. Each elenent in the list of vertex data contains information for a single
vertex taken fromthe enabl ed arrays.

Dr awAr r ayseEXT

2 16+(12*n) +(s*n) rendering command | ength

2 4116 renderi ng command opcode

4 CARD32 n (nunber of array el enents)
4 CARD32 m (nunber of enabl ed arrays)
4 ENUM node /* GL_PO NTS etc */
12*m LI STof ARRAY_| NFO

s*n LI STof VERTEX_DATA

VWere s = ns +cs +is +ts +es +vs +np+cp+ip+tp + ep + vp. (See
description bel ow, under VERTEX DATA.) Note that if an array is disabled
then no information is sent for it. For exanple, when the normal array is
di sabl ed, there is no ARRAY_INFO record for the normal array and ns and np
are both zero.

Note that the list of ARRAY_INFO is unordered: since the ARRAY_I NFO
record contains the array type, the arrays in the list may be stored
in any order. Also, the VERTEX DATA list is a packed list of vertices.
For each vertex, data is retrieved fromthe enabled arrays, and stored
inthe list.

If the command is encoded in a gl XRenderLarge request, the command
opcode and command | ength fields above are expanded to 4 bytes each:

124

NVIDIA OpenGL Extension Specifications

4 20+(12*m) +(s*n) rendering command | ength
4 4116 renderi ng command opcode
ARRAY_| NFO
4 ENUM data type
0x1400 i=1 BYTE
0x1401 i=1 UNSI GNED_BYTE
0x1402 i=2 SHORT
0x1403 i=2 UNSI GNED_SHORT
0x1404 i=4 I NT
0x1405 i=4 UNSI GNED _|I NT
0x1406 i=4 FLOAT
Ox140A =8 DOUBLE_EXT
4 I NT32 j (nunber of values in array el enent)
4 ENUM array type
0x8074 j=2/3/4 VERTEX_ARRAY_EXT
0x8075 j=3 NORMAL_ARRAY_EXT
0x8076 |=3/4 COLOR_ARRAY_EXT
0x8077 j=1 | NDEX_ARRAY_EXT
0x8078 j=1/2/3/4 TEXTURE_COORD ARRAY_ EXT
0x8079 j=1 EDGE_FLAG ARRAY_EXT
For each array, the size of an array elenent is i*j. Sone arrays
(e.g., the texture coordinate array) support different data sizes;
for these arrays, the size, j, is specified when the array is defined
VERTEX_DATA
if the normal array is enabl ed
ns LI STof BYTE normal array el enent
np unused, np=pad(ns)
if the color array is enabl ed
cs LI STof BYTE color array el enent
cp unused, cp=pad(cs)
if the index array is enabl ed
is LI STof BYTE i ndex array el enent
ip unused, ip=pad(is)
if the texture coord array is enabl ed
ts LI STof BYTE texture coord array el enent
tp unused, tp=pad(ts)
if the edge flag array is enabl ed
es LI STof BYTE edge flag array el enent
ep unused, ep=pad(es)
if the vertex array is enabled
Vs LI STof BYTE vertex array el enent
vp unused, vp=pad(vs)
where ns, c¢s, is, ts, es, vs is the size of the normal, color, index,
texture, edge and vertex array elenents and np, cp, ip, tp, ep, vpis
t he padding for the normal, color, index, texture, edge and vertex array
el enents, respectively.

EXT_vertex_array

125

EXT_vertex_array NVIDIA OpenGL Extension Specifications

Errors

| NVALI D_OPERATI ON is generated if DrawArraysiEXT is called between the
execution of Begin and the correspondi ng execution of End.

I NVALID ENUM i s generated if DrawArraysEXT paraneter <node> i s not
PO NTS, LINE_STRIP, LINE_LOOP, LINES, TRI ANGLE_STRI P, TRI ANGLE_FAN,
TRI ANGLES, QUAD STRI P, QUADS, or POLYGON

I NVALI D VALUE is generated if DrawArraysEXT parameter <count> is
negati ve.

I NVALI D VALUE is generated if VertexPointer EXT paraneter <size> is not
2, 3, or 4.

I NVALID ENUM i s generated if VertexPointer EXT paraneter <type> is not
SHORT, | NT, FLOAT, or DOUBLE_EXT.

I NVALI D VALUE is generated if VertexPointer EXT paraneter <stride> or
<count> i s negative.

I NVALID ENUM i s generated if Normal Poi nter EXT paraneter <type> is not
BYTE, SHORT, |NT, FLOAT, or DOUBLE_EXT.

I NVALI D VALUE is generated if Nornmal Poi nter EXT paraneter <stride> or
<count> i s negative.

I NVALI D VALUE i s generated if Col or Poi nter EXT paraneter <size> is not
3 or 4.

I NVALID ENUM i s generated i f Col or Poi nt er EXT paraneter <type> i s not
BYTE, UNSI GNED _BYTE, SHORT, UNSI GNED SHORT, | NT, UNSI GNED | NT, FLOAT,
or DOUBLE_EXT.

| NVALI D_VALUE is generated if Col orPoi nter EXT paraneter <stride> or
<count> i s negative.

I NVALID ENUM i s generated if |ndexPoi nter EXT paraneter <type> is not
SHORT, | NT, FLOAT, or DOUBLE_EXT.

| NVALI D_ VALUE is generated if |ndexPointer EXT paraneter <stride> or
<count> i s negative.

I NVALI D_ VALUE is generated if TexCoordPoi nter EXT paraneter <size> is not
1, 2, 3, or 4.

I NVALID ENUM i s generated if TexCoor dPoi nt er EXT paraneter <type> is not
SHORT, | NT, FLOAT, or DOUBLE_EXT.

I NVALI D VALUE is generated if TexCoordPoi nter EXT paraneter <stride> or
<count> i s negative.

I NVALI D VALUE is generated if EdgeFl agPoi nter EXT paraneter <stride> or
<count> i s negative.

I NVALID ENUM i s generated i f GetPoi ntervEXT paraneter <pnane> i s not
VERTEX_ARRAY_PO NTER_EXT, NORMAL_ARRAY_PO NTER_EXT,

126

NVIDIA OpenGL Extension Specifications

New

New

COLOR_ARRAY POl NTER_EXT,

TEXTURE_COORD ARRAY_POl NTER_EXT, or

State

CGet Val ue

VERTEX_ARRAY_EXT
VERTEX_ARRAY_SI ZE_EXT
VERTEX_ARRAY_TYPE_EXT
VERTEX_ARRAY_STRI DE_EXT
VERTEX_ARRAY COUNT_EXT
VERTEX_ARRAY_ POl NTER_EXT
NORMAL_ARRAY_EXT
NORMAL_ARRAY TYPE_EXT
NORMAL_ARRAY_STRI DE_EXT
NORMAL_ARRAY _COUNT_EXT
NORMAL_ARRAY POl NTER_EXT
COLOR_ARRAY_EXT
COLOR_ARRAY_SI ZE_EXT
COLOR_ARRAY_TYPE_EXT
COLOR_ARRAY_STRI DE_EXT
COLOR_ARRAY_COUNT_EXT
COLOR_ARRAY_ POl NTER_EXT

| NDEX_ARRAY_EXT

| NDEX_ARRAY_TYPE_EXT

| NDEX_ARRAY_STRI DE_EXT

| NDEX_ARRAY _COUNT_EXT

| NDEX_ARRAY_ POl NTER_EXT
TEXTURE_COORD_ARRAY_EXT
TEXTURE_COORD_ARRAY_SI ZE_EXT
TEXTURE_COORD_ARRAY_TYPE_EXT
TEXTURE_COORD_ARRAY_STRI DE_EXT
TEXTURE_COORD_ARRAY _COUNT_EXT
TEXTURE_COORD_ARRAY POl NTER_EXT
EDGE_FLAG ARRAY_EXT
EDGE_FLAG ARRAY_STRI DE_EXT
EDGE_FLAG_ARRAY_COUNT_EXT
EDGE_FLAG ARRAY_ POl NTER_EXT

| mpl enent ati on Dependent State

None

| NDEX_ARRAY_PO NTER_EXT,
EDGE_FLAG_ARRAY_PO NTER_EXT.

| sEnabl ed

Get | nt egerv
Get | nt egerv
Get | nt egerv
Get | nt egerv
Get Poi nt er vEXT
| sEnabl ed

Get | nt egerv
Get | nt egerv
Get | nt egerv
Get Poi nt er VEXT
| sEnabl ed

Get | nt egerv
Get | nt egerv
Get | nt egerv
Get | nt egerv
Get Poi nt er VEXT
| sEnabl ed

Get | nt egerv
Get | nt egerv
Get | nt egerv
Get Poi nt er vEXT
| sEnabl ed

Get | nt egerv
Get | nt egerv
Get | nt egerv
Get | nt egerv
Get Poi nt er VEXT
| sEnabl ed

Get | nt egerv
Get | nt egerv
Get Poi nt er vEXT

127

Type

7+
Z4
7+
7+
7+

Z5
7+
7+
7+

7+
Z8
7+
7+
7+

Z4
7+
7+
7+

7+
Z4
7+
7+
7+

7+
7+
7+

EXT_vertex_array

Initial

Val ue Attrib
Fal se client
4 client
FLOAT client
0 client
0 client
0 client
Fal se client
FLOAT client
0 client
0 client
0 client
Fal se client
4 client
FLOAT client
0 client
0 client
0 client
Fal se client
FLOAT client
0 client
0 client
0 client
Fal se client
4 client
FLOAT client
0 client
0 client
0 client
Fal se client
0 client
0 client
0 client

EXT_vertex_weighting

Nanme
EXT_vertex_wei ghti ng
Nane Strings
GL_EXT_vertex_weighting
Not i ce
Copyri ght NvI DI A Corporation,
Ver si on
August 19, 1999

Dependenci es

NVIDIA OpenGL Extension Specifications

None

Witten based on the wording of the Open@G 1.2 specification but not
dependent on it.

Overvi ew

The intent of this extension is to provide a neans for bl endi ng
geonetry based on two slightly differing nodel view matrices.

The blending is based on a vertex weighting that can change on a
per-vertex basis. This provides a primtive form of skinning.

A second nodelview matrix transformis introduced. Wen vertex

wei ghting is enabled, the incom ng vertex object coordinates are
transformed by both the primary and secondary nodel vi ew matri ces;

i kewi se, the incom ng normal coordinates are transforned by the

i nverses of both the primary and secondary nodel view matri ces.

The resulting two position coordi nates and two normal coordinates
are bl ended based on the per-vertex vertex wei ght and then conbi ned
by addition. The transforned, weighted, and conbi ned vertex position
and normal are then used by Open@ as the eye-space position and
normal for lighting, texture coordinate, generation, clipping,

and further vertex transformation

| ssues

Shoul d the extension be witten to extend to nore than two vertex
wei ght s and nodel vi ew matri ces?

RESOLUTI ON: NO. Supports only one vertex weight and two nodel vi ew
matrices. |If nore than two is useful, that can be handled with
anot her extension.

Shoul d the wei ghting factor be G.clanpf instead of G.float?
RESOLUTION: G.float. Though the value of a weighting factors

out side the range of zero to one (and even weights that do not add
to one) is dubious, there is no reason to limt the inplenmentation

128

NVIDIA OpenGL Extension Specifications EXT_vertex_weighting

to val ues between zero and one.
Shoul d the wei ghts and nodel view matrices be labeled 1 & 2 or 0 & 17

RESOLUTION: 0 & 1. This is consistent with the way |ights and
texture units are named in OpenG.. Mke G._MODELVI EW)_EXT

be an alias for GL_MODELVIEW Note that the GL_MODELVI EW) EXT+1
will not be GL_MODELVIEWL EXT as is the case with G._LI GHTO and
G__LI GHT1.

Shoul d there be a way to sinmultaneously Rotate, Translate, Scale,
LoadMatrix, MultMatrix, etc. the two nodel view matrices together?

RESOLUTION: NO. The application must use MatrixMbde and repeated
calls to keep the matrices in sync if desired.

Shoul d t he secondary nodel view matri x stack be as deep as the primary
matri x stack or can they be different sizes?

RESOLUTI ON: Must be the SAME size. This wastes a |ot of nmenory
that will be probably never be used (the nodel view matri x stack
nmust have at | east 32 entries), but nenory is cheap.

The val ue returned by MAX MODELVI EW STACK DEPTH applies to both
nodel vi ew matri ces.

Shoul d there be any vertex array support for vertex weights.
RESOLUTI ON: YES.

Shoul d we have a VertexWei ght 2f EXT that takes has two wei ght val ues?
RESOLUTION: NO. The weights are always vw and 1-vw.

VWhat is the "correct” way to blend matrices, particularly when wo is
not one or the nodelview matrix i s projective?

RESOLUTION: Wiile it may not be 100% correct, the extension bl ends
the vertices based on transfornm ng the object coordinates by

both M0 and ML, but the resulting w coordi nate cones from sinply
transform ng the object coordinates by M) and extracting the w

Anot her option would be to sinply blend the two sets of eye
coordi nates wi thout any special handling of w This is harder.

Anot her option would be to divide by w before blending the two
sets of eye coordinates. This is awkward because if the wei ght
is 1.0 with vertex weighting enabled, the result is not the
same as disabling vertex weighting since EYE LI NEAR texgen

i s based of of the non-perspective corrected eye coordinates.

As specified, the normal weighting and conbination is perforned on
unnormal i zed normals. Wuld the math work better if the normals
were nornalized before weighting and conbi ni ng?

RESOLUTI ON: Vertex weighting of normals is after the
GL_RESCALE NORMAL step and before the G._NORMALI ZE st ep.

129

EXT_vertex_weighting NVIDIA OpenGL Extension Specifications

As specified, feedback and selection should apply vertex weighting
i f enabled. Yuck, that would nmean that we need software code for
vertex wei ghting.

RESOLUTION: YES, it should work with feedback and sel ecti on

Sonetimes it would be useful to mirror changes in both nodel vi ew
matrices. For exanple, the viewing transforns are likely to be
different, just the final nodeling transforns would be different.
Shoul d there be an APl support for mrroring transformations into
both matrices?

RESOLUTION: NO. Such support is likely to conplicate the
matri X managenent in the OpenG.. Applications can do a

Get matrix from nodel viewd and then a LoadMatrix into nodel viewl
manual ly if they need to mrror things.

| also worry that if we had a mrrored matri x node, it would
doubl e the transform concatenation work if used naively.

Many of the changes to the two nodel view nmatrices will be the sane.
For exanple, the initial view transformloaded into each will be the
same. Should there be a way to "mrror" changes to both nodel vi ew
matrices?

RESOLUTION: NO. Mrroring matri x changes woul d conplicate the
driver's nmanagenent of matrices. Al so, | amworried that naive
users would mirror all transforns and |lead to |ots of redundant
matri x concatenations. The nost efficient way to handl e the
slight differences between the nodel view matrices is sinply

to GetFloat the primary matri x, LoadMatrix the values in the
secondary nodel view matri x, and then performthe "extra" transform
to the secondary nodel view matri x.

Ideally, a gl CopyMatrix(G.enum src, G.enum dst) type QpenGL
command coul d nake this nore efficient. There are simliar cases
where you want the nodelview matrix mrrored in the texture matri x.
This is not the extension to solve this m nor problem

The post-vertex weighting normal is unlikely to be nornalized.
Shoul d this extension automatically enable normalization?

RESOLUTION: NO. Normalization should operate as specified.
The user is responsible for enabling G._RESCALE NORNAL or
GL_NORMALI ZE as needed.

You coul d i nagi ne cases where the application only sent
vertex weights of either zero or one and pre-normalized nornmals
so that GL_NORMALI ZE woul d not strictly be required.

Note that the vertex weighting of transformed nornals occurs
BEFORE nornal i ze and AFTER rescaling. See the issue bel ow for
why this can nake a difference

How does vertex weighting interact with OpenG 1.2's G._RESCALE NORNAL
enabl e?

130

NVIDIA OpenGL Extension Specifications EXT_vertex_weighting

RESOLUTI ON: Vertex weighting of transforned normals occurs
BEFORE nornal i ze and AFTER rescaling.

Qpen@ 1.2 permits normal rescaling to behave just |ike normalize
and because normalize imediately follows rescaling, enabling
rescaling can be inplenmentied by sinply always enabling nornalize.

Vertex wei ghting changes this. |If one or both of the nodel vi ew
matrices has a non-uniformscale, it may be useful to enable
rescaling and normalize and this operates differently than
sinmply enabling normalize. The difference is that rescaling
occurs before the normal vertex weighting.

An inplenentation that truly treated rescaling as a nornalize
woul d support both a pre-weighting nornmalize and a post-wei ghting
normal i ze. Arguably, this is a good thing.

For inplenmentations that performsinply rescaling and not a ful
normalize to inplenent rescaling, the rescaling factor can be
concatenated into each particul ar i nverse nodel view matri x.

New Procedures and Functi ons
voi d VertexWei ghtf EXT(fl oat wei ght);
voi d VertexWei ght f vEXT(fl oat *wei ght);

voi d VertexWei ght Poi nter EXT(int size, enumtype,
Ssizei stride, void *pointer);

New Tokens
Accepted by the <target> paraneter of Enable:
VERTEX_WEI GHTI NG_EXT 0x8509
Accepted by the <node> parameter of WMatrixMde:

MODELVI EVD_EXT 0x1700 (alias to MODELVI EW enurmer ant)
MODELVI EWL_EXT 0x850a

Accepted by the <pnanme> paraneter of GetBool eanv, Getlntegerv,
Get Fl oat v, and Get Doubl ev:

VERTEX_WEI GHTI NG_EXT
MODELVI EW)_EXT

MODELVI EWL_EXT

CURRENT VERTEX_WEI GHT _EXT 0x850b

VERTEX_WE| GHT _ARRAY_EXT 0x850c

VERTEX_WE| GHT_ARRAY_SI ZE_ EXT 0x850d

VERTEX_WE| GHT_ARRAY_TYPE_EXT 0x850e

VERTEX_WE| GHT_ARRAY_STRI DE_EXT 0x850f

MODELVI EW)_STACK_DEPTH_EXT 0xOBA3 (alias to MODELVI EW STACK DEPTH)
MODELVI EWL_STACK_DEPTH_EXT 0x8502

131

EXT_vertex_weighting NVIDIA OpenGL Extension Specifications

Accepted by the <pnanme> paraneter of GetPointerv:
VERTEX_WEI GHT_ARRAY PO NTER EXT 0x8510
Additions to Chapter 2 of the G Specification (QpenG Operation)
-- Section 2.6. 2nd paragraph changed:

"Each vertex is specified with two, three, or four coordinates.

In addition, a current normal, current texture coordi nates, current
color, and current vertex weight may be used in processing each
vertex."

-- Section 2.6. New paragraph after the 3rd paragraph
"A vertex weight is associated with each vertex. When vertex
wei ghting is enabled, this weight is used as a bl endi ng factor
to blend the position and nornmals transforned by the primry and
secondary nodel view matrix transforns. The vertex weighting
functionality takes place conpletely in the "vertex / nornmal
transformati on" stage of Figure 2.2."

-- Section 2.6.3. First paragraph changed to

"The only GL commands that are allowed within any Begin/End pairs are
t he conmands for specifying vertex coordinates, vertex colors, nornal
coordi nates, and texture coordinates (Vertex, Color, VertexWi ghtEXT,
I ndex, Normal, TexCoord)..."

-- Section 2.7. New paragraph after the 4th paragraph
"The current vertex weight is set using

voi d VertexWei ghtf EXT(fl oat wei ght);
voi d VertexWei ght fvEXT(fl oat *wei ght);

This weight is used when vertex weighting is enabled.”
-- Section 2.7. The |ast paragraph changes from

" and one floating-point value to store the current col or index."
t o:

one fl oating-point nunber to store the vertex weight, and one
floating-point value to store the current col or index."

-- Section 2.8. Change 1st paragraph to say:
"The client may specify up to seven arrays: one each to store edge
flags, texture coordinates, colors, color indices, vertex weights,
normal s, and vertices. The conmmands”

Add to functions listed followi ng first paragraph

voi d VertexWei ght Poi nter EXT(int size, enumtype,
Ssizei stride, void *pointer);

132

NVIDIA OpenGL Extension Specifications EXT_vertex_weighting

Add to table 2.4 (p. 22):

Command Si zes Types

Ver t ex\\ei ght Poi nt er EXT 1 fl oat

Starting with the second paragraph on p. 23, change to add
VERTEX_WEI GHT_ARRAY_EXT:

"An individual array is enabled or disabled by calling one of

voi d Enabl eCl i ent St at e(enum arr ay)
voi d Di sabl ed i ent St at e(enum arr ay)

with array set to EDGE_FLAG ARRAY, TEXTURE_COORD ARRAY, COLOR ARRAY,
| NDEX_ARRAY, VERTEX_ARRAY_VEI GHT_EXT, NORVAL_ARRAY, or VERTEX_ARRAY,
for the edge flag, texture coordinate, color, secondary color,

color index, normal, or vertex array, respectively.

The ith el enent of every enabled array is transferred to the G. by calling
void ArrayEl enent (int i)

For each enabled array, it is as though the correspondi ng conmand
fromsection 2.7 or section 2.6.2 were called with a pointer to
element i. For the vertex array, the corresponding command is

Vert ex<si ze><type>v, where <size> is one of [2,3,4], and <type> is
one of [s,i,f,d], corresponding to array types short, int, float, and
doubl e respectively. The correspondi ng conmands for the edge flag,
texture coordi nate, color, secondary col or, color index, and normal
arrays are EdgeFl agv, TexCoord<si ze><type>v, Col or<si ze><type>v,

| ndex<t ype>v, VertexWei ghtfvEXT, and Normal <type>v, respectively..."

Change pseudocode on p. 27 to disable vertex weight array for canned
interleaved array formats. After the lines

Di sabl ed i ent St at e(EDGE_FLAG_ARRAY) ;
Di sabl ed i ent St at e(| NDEX_ARRAY) ;

insert the line

Di sabl ed i ent St at e(VERTEX_WEI GHT_ARRAY_EXT) ;

Substitute "seven" for every occurrence of "six" in the final

par agraph on p. 27.

-- Section 2.10. Change the sentence:

The nodel -view matrix is applied to these coordinates to yield eye
coordi nates. "

to:
"The primary nodel view matrix is applied to these coordinates to

yi el d eye coordi nates. Wen vertex weighting is enabled, a secondary
nodel view matrix is also applied to the vertex coordinates, the

133

EXT_vertex_weighting NVIDIA OpenGL Extension Specifications

result of the two nodel view transformations are weighted by its
respective vertex wei ghting factor and conbined by addition to yield
the true eye coordinates. Vertex weighting is enabled or disabled
usi ng Enabl e and Di sable (see section 2.10.3) with an argunent of
VERTEX_WEI GHTI NG_EXT. "

Change the 4th paragraph to:

"If vertex weighting is disabled and a vertex in object coordinates
is given by (xo yo zo wo)' and the primary nodel -view matrix is
M), then the vertex's eye coordinates are found as

(xe ye ze we)' = M (x0 yo zo wo)'

If vertex weighting is enabled, then the vertex's eye coordi nates
are found as

(xe0 yeO ze0 we0)' M) (xo yo zo wo)'

(xel yel zel wel)' = M (x0 yo zo wo)'
(xe,ye,ze)' = vw(xe0,ye0,ze0)' + (1-vw) * (xel,yel,zel)'
we = we0

where ML is the secondary nodel view matrix and vw is the current
vertex weight."

-- Section 2.10.2 Change the 1st paragraph to say:

"The projection matrix and the primary and secondary nodel vi ew
matrices are set and nodified with a variety of commands. The
affected matrix is determned by the current matrix node. The
current matrix node is set with

voi d Matri xMode(enum node) ;

whi ch takes one of the four pre-defined constants TEXTURE,

MODELVI EW), MCODELVI EWL, or PRQJECTION (note that MODELVIEWis an
alias for MODELVIEWD). TEXTURE is described later. [If the current
matrix is MODELVI EWD, then matrix operations apply to the primary
nodel view matrix; if MODELVIEWL, then matrix operations apply to

t he secondary nodel view matrix; if PROQIECTIQN, then they apply to
the projection matrix."

Change the 9th paragraph to say:

"There is a stack of matrices for each of the matrix nodes. For the
MODELVI EMD and MODELVI EWL nopdes, the stack is at |east 32 (that is,
there is a stack of at |east 32 nodelview matrices). "

Change the | ast paragraph to say:

"The state required to inplenent transformations consists of a
four-val ued integer indicating the current matrix node, a stack of

at least two 4x4 matrices for each of PRQIECTI ON and TEXTURE wi th
associ ated stack pointers, and two stacks of at |east 32 4x4 matrices

134

NVIDIA OpenGL Extension Specifications EXT_vertex_weighting

wi th an associ ated stack pointer for MODELVI EW) and MODELVI EW.
Initially, there is only one matri x on each stack, and all matrices
are set to the identity. The initial matrix node is MODELVI EWD. "

-- Section 2.10.3 Change the 2nd and 7th paragraphs to say:

"For a nodelview matrix M the normal for this matrix is transforned
to eye coordi nates by:

(nx" ny' nz') =(nx ny nz q) * M-1

where, if (x y z w)' are the associated vertex coordinates, then
0, w= 0

/
|
g=|] -(nx ny nz) (xvy z)' (2.1)
I , wl!l=20
\ w

| mpl enent ati ons may choose instead to transform(x y z)' to eye
coor di nat es usi ng

(nx'" ny' nz') = (nx ny nz) * Mi*-1

VWhere Miu is the upper leftnost 3x3 matrix taken from M
Rescale multiplies the transforned normals by a scale factor

(nx" ny" nz") =f (nx' ny' nz')

If rescaling is disabled, then f = 1. |If rescaling is enabled, then
f is computed as (mj denotes the matrix elenment in rowi and colum |

of M‘-1, nunbering the topnost row of the matrix as row 1 and the
| ef tnost colum as colum 1

sqrt(nB17r2 + nB272 + nB372)
Note that if the normals sent to GL were unit |ength and the nodel -vi ew
matrix uniformy scal es space, the rescal e make sthe transformed normal s
unit | ength.

Al ternatively, an inplenentation may chose f as

sgrt(nx' "2 + ny' "2 + nz'"2)
recomputing f for each normal. This makes all non-zero |length
normal s unit length regardless of their input |length and the nature
of the nodelview matrix.

After rescaling, the final transformed normal used in lighting, nf,
depends on whether vertex weighting is enabled or not.

135

EXT_vertex_weighting NVIDIA OpenGL Extension Specifications

VWhen vertex weighting is disabled, nf is computed as
nf =m* (nx"0O ny"0 nz"0)

where (nx"0 ny"0 nz"0) is the normal transfornmed as descri bed
above using the primary nodelview matrix for M

If nornmalization is enabled nFl. Oherw se

sgrt(nx"0"2 + ny"0”"2 + nz"0"2)
However when vertex weighting is enabled, the normal is transforned
twi ce as described above, once by the primary nodel view matri x and
again by the secondary nodel view matrix, weighted using the current
per-vertex weight, and normalized. So nf is computed as
nf =m* (nx"w ny"w nz"w)
where nw i s the wei ghting normal computed as
nw=vw?* (nx"0O ny"0 nz"0) + (1-vw) * (nx"1 ny"1 nz"1)

where (nx"0 ny"0 nz"0) is the normal transfornmed as descri bed

above using the primary nodelview matrix for M and (nx"1 ny"1 nz"1) is
the normal transforned as descri bed above using the secondary nodel vi ew
matrix for M and vwis the current pver-vertex weight."

-- Section 2.12. Changes the 3rd paragraph

"The coordinates are treated as if they were specified in a

Vertex command. The x, y, z, and w coordi nates are transforned

by the current primary nodel view and perspective matrices. These
coordi nates, along with current values, are used to generate a
color and texture coordinates just as done for a vertex, except

that vertex weighting is always treated as if it is disabled."”

Additions to Chapter 3 of the GL Specification (Rasterization)

None

Additions to Chapter 4 of the G Specification (Per-Fragment Operations
and the Franebuffer)

None
Additions to Chapter 5 of the G Specification (Special Functions)
None
Additions to Chapter 6 of the GL Specification (State and State Requests)

None

136

NVIDIA OpenGL Extension Specifications

Additions to the GX Specification

None

G X Protocol

A new G rendering conmand i s added. The follow ng conmand i s sent
to the server as part of a gl XRender request:

Wi ght Ver t exEXT

2 8 renderi ng command | ength
2 ??777 renderi ng command opcode
4 FLOAT32 weightO

EXT_vertex_weighting

Errors

The current vertex wei ght can be updated at any tine.

Wi ght Vert exEXT can be call ed between a call

correspondi ng cal |

to End.

to Begin and the

In particul ar

I NVALI D VALUE is generated if VertexWei ght Poi nter EXT paraneter <size>

is not 1.

I NVALID ENUM i s generated if VertexWi ght Poi nt er EXT paraneter <type>

is not FLOAT.

I NVALI D VALUE is generated if VertexWei ght Poi nter EXT paraneter <stride>

i S negati ve.
New St at e

(table 6.5, pl96)
Get Val ue

(table 6.6, pl97)

Gt Val ue

VERTEX VB GHT_ARRAY_EXT
VERTEX VB GHT_ARRAY_ S ZE BEXT
VERTEX VB GHT_ARRAY_TYPE EXT
VERTEX VH GHT_ARRAY_STR CE EXT
VERTEX VH GHT_ARRAY_PQO NTER EXT

(table 6.7, pl9g)

Gt Val ue Type
MIEMBO MR X EXT 32X
MIDELM BVE, MATR X_EXT 32 XM
MIEM EVO_STACK DEPTH EXT Z+
MIEM BWL_STACK DEPTH EXT Z+
MATR X MIE z4
VERTEX VM8 GHTT NG BXT B

Type

Gt Gonmand Initial Value Description Sec Attribute
GetH oatv 1 Qurrent 2.8 current
vertex wei ght

Type Gt Gonmand Initial Value Description Sec Attribute
B | sEnabl ed Fal se \ertex wei ght enabl e 2.8 vertex-array
Z+ Gt I ntegerv 1 Wi ghts per vertex 2.8 vertex-array
21 Gt I ntegerv FLQAT Type of weights 2.8 vertex-array
z Get I ntegerv 0 Sride between vei ghts 2.8 vertex-array
Y Get Poi nterv 0 Pointer to vertex weight array 2.8 vertex-array
Gt Gonmand Initial Value Description Sec Atribute
GetH oatv Identity Prinary nodel view 2.10.2 -

stack
GetH oatv Identity Secondary nodel view 2.10.2 -

stack
Get I ntegerv 1 Prinary nodel view 2.10.2 -

stack depth
Get I ntegerv 1 Secondary nodel view 2.10.2 -

stack depth
Get I ntegerv MIEM B/O Qurrent matrix node 2.10.2 transform
| sEnabl ed Fal se \ertex wei ghting 2.10.2 transformenabl e

on/ of f

NOTE MIEM EWMSTR X i's an alias for MDELV EV@_MATR X EXT
MTEM BASTAK DEPTH i s an alias for MDEM B0 _STACK DEPTH EXT

137

EXT_vertex_weighting NVIDIA OpenGL Extension Specifications

New | npl ement ati on Dependent State

None

138

NVIDIA OpenGL Extension Specifications NV_blend_square

Nanme
NV_bl end_square

Nane Strings
G._NV_bl end_square

Ver si on
Date: 8/7/1999 Version: 1.0

Nurnber
27?2

Dependenci es
Witten based on the wording of the OpenG. 1.2 specification.

Overvi ew
It is useful to be able to multiply a nunber by itself in the bl ending
stages -- for exanple, in certain types of specular lighting effects
where a result froma dot product needs to be taken to a high power.
Thi s extension provides four additional blending factors to permt
this and other effects: SRC COLOR and ONE_ M NUS SRC COLOR for source
bl endi ng factors, and DST_COLOR and ONE_M NUS_DST_COLOR for destination
bl endi ng factors.

New Procedures and Functi ons
None

New Tokens
None

Additions to Chapter 2 of the G Specification (QpenG Operation)
None

Additions to Chapter 3 of the GL Specification (Rasterization)

None

Additions to Chapter 4 of the G Specification (Per-Fragment Operations
and the Franebuffer)

Two lines are added to each of tables 4.1 and 4. 2:

139

NV_blend_square NVIDIA OpenGL Extension Specifications

Val ue Bl end Factors

ZERO (0, 0, 0, 0)

ONE (1, 1, 1, 1)

SRC_COLOR (Rs, Gs, Bs, As) NEW
ONE_M NUS_SRC _COLOR (1, 1, 1, 1) - (Rs, Gs, Bs, As) NEW
DST_COLOR (Rd, &d, Bd, Ad)

ONE_M NUS_DST_COLOR (1, 1, 1, 1) - (Rd, Gd, Bd, Ad)

SRC_ALPHA (As, As, As, As) /| Ka

ONE_M NUS_SRC_ALPHA (1, 1, 1, 1) - (As, As, As, As) / Ka

DST_ALPHA (Ad, Ad, Ad, Ad) / Ka

ONE_M NUS_DST_ALPHA (1, 1, 1, 1) - (Ad, Ad, Ad, Ad) / Ka
CONSTANT_COLOR (Rc, Cc, Bc, Ac)

ONE_M NUS_CONSTANT_COLOR (1, 1, 1, 1) - (Rc, G, Bc, Ac)

CONSTANT_ALPHA (Ac, Ac, Ac, Ac)

ONE_M NUS_CONSTANT_ALPHA (1, 1, 1, 1) - (Ac, Ac, Ac, Ac)

SRC_ALPHA_ SATURATE (f, f, f, 1)

Table 4.1: Values controlling the source bl ending function and the
source bl endi ng values they conpute. f = mn(As, 1 - Ad).

Val ue Bl end Factors

ZERO (0, 0, 0, 0

ONE (1, 1, 1, 1)

SRC_COLOR (Rs, Gs, Bs, As)

ONE_M NUS_SRC COLOR (1, 1, 1, 1) - (Rs, Gs, Bs, As)

DST_COLOR (Rd, Gd, Bd, Ad) NEW
ONE_M NUS_DST_COLOR (1, 1, 1, 1) - (Rd, Gd, Bd, Ad) NEW
SRC_ALPHA (As, As, As, As) /| Ka

ONE_M NUS_SRC_ALPHA (1, 1, 1, 1) - (As, As, As, As) / Ka

DST_ALPHA (Ad, Ad, Ad, Ad) / Ka

ONE_M NUS_DST_ALPHA (1, 1, 1, 1) - (Ad, Ad, Ad, Ad) / Ka
CONSTANT_COLOR_EXT (Rc, G, Bc, Ac)

ONE_M NUS_CONSTANT_COLOR_EXT (1, 1, 1, 1) - (Re, Gc, Bc, Ac)
CONSTANT_ALPHA EXT (Ac, Ac, Ac, Ac)

ONE_M NUS_CONSTANT_ALPHA EXT (1, 1, 1, 1) - (Ac, Ac, Ac, Ac)

Table 4.2: Values controlling the destination blending function and
t he destination bl endi ng val ues they conpute.

Additions to Chapter 5 of the G Specification (Special Functions)
None
Additions to Chapter 6 of the GL Specification (State and State Requests)
None
Additions to the GX Specification
None
GLX Protocol
None
Errors

None

140

NVIDIA OpenGL Extension Specifications

New St at e

(table 6.15, page 205)
Get Val ue Type
BLEND_SRC Z15
BLEND DST Z14

Get | nt egerv
Get | nt egerv

NV_blend_square

Attribute

col or-buffer
col or-buffer

NOTE: the only change is that Z13 changes to Z15 and Z12 changes to Z14

New | npl ement ati on Dependent State

None

141

Copyright NVIDIA Corporation, 1999.

NVIDIA Proprietary

NV_fog_distance

NV_f og_di st ance
Nane Strings

G._NV_fog_di stance
Not i ce

Copyri ght NvI DI A Corporation,
NVI DI A Proprietary.

Ver si on

August 19, 1999
Nurnber

?7?

Dependenci es

NVIDIA OpenGL Extension Specifications

Witten based on the wording of the Open@E 1.2 specification

Overvi ew

Ideally, the fog distance (used to conpute the fog factor as
described in Section 3.10) should be conputed as the per-fragnent

Eucl i dean di stance to the fragnent center fromthe eye

In practice,

i npl enent ati ons "may choose to approxi mate the eye-coordi nate

di stance fromthe eye to each fragnment center by abs(ze).

Furt her,

[the fog factor] f need not be conputed at each fragnent, but may
be conputed at each vertex and interpolated as other data are.”

Thi s extension provides the application specific control over how
Open@. conputes the di stance used in conmputing the fog factor

The extension supports three fog di stance nodes: "eye pl ane absol ute"
where the fog distance is the absolute planar distance fromthe eye
plane (i.e., Open@'s standard inplenentation allowance as cited above);
"eye plane", where the fog distance is the signed planar distance

fromthe eye plane; and "eye radial™
conput ed as a Euclidean di stance.

where the fog distance is
In the case of the eye radial

fog di stance node, the distance nmay be conmputed per-vertex and then

i nterpol ated per-fragment.

The intent of this extension is to provide applications with better
control over the tradeoff between performance and fog quality.
The "eye planar” nodes (signed or absolute) are straightforward

to i mpl ement with good perfornance,
under-fogged at the edges of the field of view

but scenes are consistently

The "eye radial"

node can provide for nore accurate fog at the edges of the field of
view, but this assunmes that either the eye radial fog distance is
conmput ed per-fragnent, or if the fog distance is conputed per-vertex

and then interpol ated per-fragnent,

then the scene nust be

NVIDIA OpenGL Extension Specifications NV_fog_distance

sufficiently tessell ated.
| ssues
VWhat shoul d the default state be?
| MPLEMENTATI ON DEPENDENT.

The EYE_PLANE _ABSOLUTE_NV node is the npbst consistent with the way
nmost current OQpenGL inplenentations are inplenmented without this
ext ensi on, but because this extension provides specific control
over a capability that core OQpenG is intentionally |ax about,

the default fog distance node is left inplenmentation dependent.

W& woul d not want a future QpenGL inplenentation that supports
fast EYE RADI AL_NV fog di stance to be stuck using sonething |ess.

Advice: If an inplenmentation can provide fast per-pixel EYE_RAD AL_NV
support, then EYE_ RADIAL_NV is the ideal default, but if not, then
EYE PLANE ABSOLUTE NV is the nost reasonabl e default node.

How does this extension interact with the EXT_fog_coord extension?

I f FOG_COORDI NATE_SOURCE_EXT is set to FOG COORDI NATE_EXT,

then the fog distance node is ignored. However, the fog

di stance node is used when the FOG COORDI NATE SOURCE EXT is

set to FRAGVENT_DEPTH EXT. Essentially, when the EXT_fog_coord
functionality is enabled, the fog distance is supplied by the

user -supplied fog-coordinate so no automatic fog di stance conputation
i s perforned.

New Procedures and Functi ons
None
New Tokens

Accepted by the <pnanme> paraneters of Fogf, Fogi, Fogfv, Fogiv,
CGet Bool eanv, Getlntegerv, GetFloatv, and Get Doubl ev:

FOG_DI STANCE_MCODE_NV 0x855a
VWen the <pnane> paraneter of Fogf, Fogi, Foggv, and Fogiv, is

FOG DI STANCE_ MODE_NV, then the val ue of <paranm> or the val ue pointed
to by <parans> nmay be:

EYE_RADI AL_NV 0x855b
EYE_PLANE
EYE_PLANE_ABSOLUTE_NV 0x855¢

Additions to Chapter 2 of the 1.2 Specification (OpenG. Qperation)

None

Additions to Chapter 3 of the 1.2 Specification (Rasterization)

-- Section 3.10 "Fog"

143

‘Arejanidoid VIAIAN

Copyright NVIDIA Corporation, 1999.

NVIDIA Proprietary.

NV_fog_distance NVIDIA OpenGL Extension Specifications

Add to the end of the 3rd paragraph

"I'f pnane is FOG DI STANCE_MODE_NV, then param nust be, or parans

must

point to an integer that is one of the synbolic constants

EYE_PLANE_ABSCLUTE_NV, EYE_PLANE, or EYE_RADI AL_NV and this synbolic
constant determ nes how the fog distance should be conputed.™

Repl ace the 4t h paragraph begi nning "An inplenmentati on may choose
to approximate ..." wth

"When the fog distance node is EYE PLANE ABSOLUTE_NV, the fog

di stance z is approximated by abs(ze) [where ze is the Z conponent
of the fragment's eye position]. Wen the fog distance node is
EYE_PLANE, the fog distance z is approximated by ze. Wen the

fog distance node is EYE RADIAL_NV, the fog distance z is conputed
as the Euclidean distance fromthe center of the fragnent in eye
coordi nates to the eye position. Specifically:

z

= sqrt(xe*xe + ye*ye + ze*ze);

In the EYE RADI AL_NV fog di stance node, the Euclidean distance
is permtted to be conmputed per-vertex, and then interpolated
per-fragment."

Change the | ast paragraph to read:

"The

state required for fog consists of a three valued integer to

select the fog equation, a three valued integer to select the fog

di stance node, three floating-point values d, e, and s, and RGBA fog
color and a fog color index, and a single bit to indicate whether

or not fog is enabled. 1In the initial state, fog is disabled,
FOG_MODE is EXP, FOG DI STANCE_NV is inplenentation defined, d =

1.0,

Addi ti ons

e=10 and s = 0.0; C =(0,0,0,0) and if =0."

to Chapter 4 of the 1.2 Specification (Per-Fragnment Operations

and the Frame Buffer)

None

Addi ti ons

None

Addi ti ons

None

Addi ti ons

None

Errors

to Chapter 5 of the 1.2 Specification (Special Functions)

to Chapter 6 of the 1.2 Specification (State and State Requests)

to the GX Specification

I NVALID ENUM i s generated when Fog is called with a <pname> of
FOG DI STANCE_ MODE_NV and the val ue of <parans or what is pointed
to by <parans> is not one of EYE PLANE ABSOLUTE NV, EYE PLANE

or EYE_RADI AL_NV.

144

NVIDIA OpenGL Extension Specifications

New St at e

(table 6.8, pl98) add the entry:

Get Val ue Type Get Command Initial Value
FOG DI STANCE_MODE_NvV Z3 GetlIntegerv inplenentation
dependent

New | npl ement ati on State

None

145

NV_fog_distance

Descri ption Sec Attribute

Det erm nes how 3.10 fog
fog distance
i s conputed

‘Arejaudold VIAIAN

Copyright NVIDIA Corporation, 1999.

NVIDIA Proprietary.

NV_register_combiners

NV_regi st er _conbi ners
Nane Strings

GL_NV_regi ster_conbi ners
Not i ce

Copyri ght NvI DI A Corporation,
NVI DI A Proprietary.

Ver si on
Novenber 15, 1999
Nurnber
?7?

Dependenci es

ARB nul titexture,
at | east 2.

1999.

NVIDIA OpenGL Extension Specifications

assum ng the val ue of MAX_ACTI VE _ TEXTURES ARB i s

Witten based on the wording of the Open@ 1.2 specification with
the ARB nmultitexture appendi x E

Overvi ew

NVI DI A's next-generation graphics processor and its derivative designs
support an extrenely configurabl e mechani sm know as "regi ster conbiners
for conputing fragment col ors.

The regi ster conbi ner mechanismis a significant redesign of NVIDI A s
original TNT conbi ner nechanismas introduced by NVIDIA's R VA

TNT graphics processor. Fanmiliarity with the TNT conbi ners will

hel p the reader appreciate the greatly enhanced regi ster conbiners
functionality (see the NV_texture_env_conbi ne4 OpenG ext ensi on
specification for this background). The register conbi ner mechani sm

has the foll owi ng enhanced functionality:

The nuneric range of conbiner conputations is from[-1,1]
(instead of TNT's [0, 1] nuneric range),

The set of avail able conbiner inputs is expanded to include the
secondary color, fog color, fog factor, and a second conbi ner
constant color (TNT's avail abl e conbi ner inputs consist of

only zero, a single conbiner constant col or, the secondary col or,
texture 0, texture 1, and, in the case of conbiner 1, the result
of combi ner 0).

Each conbi ner variable input can be independently scal ed and

bi ased into several possible nuneric ranges (TNT can only
conpl ement conbi ner inputs).

146

NVIDIA OpenGL Extension Specifications NV_register_combiners

Each conbi ner stage conputes three distinct outputs (instead
TNT' s single conbi ner output).

The out put operations include support for conputing dot products
(TNT has no support for conputing dot products).

After each output operation, there is a configurable scale and bias
applied (TNT's conbi ner operations builds in a scale and/or bias
into sone of its conbiner operations).

Each input variable for each conbiner stage is fetched from any
entry in a conbiner register set. Mreover, the outputs of each
conbi ner stage are witten into the register set of the subsequent
conbi ner stage (TNT could only use the result from conbiner 0 as
a possible input to conbiner 1; TNT | acks the notion of an

i nput/out put register set).

The regi ster conbi ner nmechani sm supports at |east two general conbiner
stages and then a special final conbiner stage appropriate for

appl ying a color sumand fog conmputation (TNT provides two sinpler
conbi ner stages, and TNT's col or sumand fog stages are hard-wired
and not subsumed by the conbi ner nechanismas in register conbiners).

The regi ster conbiners fit into the OQpen@ pipeline as a rasterization
processi ng stage operating in parallel to the traditional OQpenG
texture environment, color sum AND fog application. Enabling this
ext ensi on bypasses OpenG.'s existing texture environment, color sum
and fog application processing and instead use the register conbiners.
The conbi ner and texture environnent state is orthogonal so

nodi fyi ng conbi ner state does not change the traditional OpenG
texture environment state and the texture environnent state is

i gnored when conbi ners are enabl ed.

Open@ application devel opers can use the regi ster conbi ner mechani sm
for very sophisticated shading techniques. For exanple, an

approxi mati on of Blinn's bunp nmappi ng techni que can be achieved wth
t he conbi ner mechanism Additionally, multi-pass shadi ng nodel s

that require several passes with unextended Qpen@ 1.2 functionality
can be inplenented in several fewer passes with register conbiners.
For exanple, Id Software's Quake 3 shading nodel that nornmally
requires five rendering passes can be perforned in a single pass

wi th register conbiners.

| ssues
Shoul d we expose the full register conbiners mechani sn?
RESOLUTION: NO. W ignhore small bits of NV10 hardware
functionality. The texture LOD input is ignored. W also ignore
the inverts on input to the EF product.

Do we provide full gets for all the conbi ner state?

RESOLUTI ON: YES

147

‘Arejanidoid VIAIAN

Copyright NVIDIA Corporation, 1999.

NVIDIA Proprietary.

NV_register_combiners NVIDIA OpenGL Extension Specifications

Do we paraneterize conbiner input and output updates to avoid
enuner ant expl osi ons?

RESOLUTI ON: YES. To update a conbi ner stage input variable, you
need to specify the <stage> <portion> and <variable> To update a
conbi ner stage output operation, you need to specify the <stage> and
<portion>. This does nean that we need to add special Get routines
that are |ikew se paraneterized. Hence, GetConbinerl nput Paraneter*,
CGet Combi ner Qut put Par anet er*, and Get Fi nal Conbi ner | nput Par anet er *.

Is the register conbiner functionality a super-set of the TNT comnbi ner
functionality?

Yes, but only in the sense of being a conputational super-set.

Al'l computations performed with the TNT conbi ners can be perforned
with the register conbiners, but the sequence of operations necessary
to configure an identical conputational result can be quite
different.

For exanple, the TNT conbi ners have an operation that includes

a final conplenent operation. The register conbiners can perform
range mappings only on inputs, but not on outputs. The register
conbiners can mmc the TNT operation with a post-operation

conpl ement only by taking pains to conpl enent on input any uses
of the output in |ater conbiner stages.

VWhat this does nmean is that NV10's hardware functionality
will permt support for both the NV_regi ster_conbi ners AND
NV_texture_env_conbi ne4 extensions.

Not e the exi stance of an "speclit” input conplenent bit supported
by NV10 (but not accessible through the NV_regi ster_conbi ners extensions).

Shoul d we say anythi ng about the precision of the comnbiner
conput ati ons?

RESOLUTION: NO The spec is witten as if the conmputations are
done on floating point values ranging from-1.0 to 1.0 (clanping is
specified where this range is exceeded). The fact that NV10 does
the conputations as 9-bit signed fixed point is not nmentioned in
the spec. This permits a future design to support nore precision
or use a floating pointing representation

VWhat should the initial conmbiner state be?
RESOLUTI ON: See tables NV _register_conbiners.4 and
NV_regi ster_conbiners.5. The default state has one general conbiner
stage active that nodul ates the incomng color with texture O.

The final conmbiner is setup initially to inplement OQpenG 1.2's
standard col or sum and fog stages.

VWhat shoul d happen to the TEXTUREO_ARB and TEXTUERL_ARB inputs if
one or both textures are di sabl ed?

RESOLUTI ON: The val ue of these inputs is undefined.

148

NVIDIA OpenGL Extension Specifications NV_register_combiners

VWhat do the TEXTUREO ARB and TEXTURE1_ARB i nputs correspond to?
Does t he number correspond to the absolute texture unit numnber
or is the nunber based on how nmany textures are enabled (ie,
TEXTURE_ARBO woul d correspond to the 2nd texture unit if the
2nd unit is enabled, but the 1st is disabled).

RESOLUTI ON: The absolute texture unit.

This should be a ot less confusing to the programer than having
the texture inputs switch textures if texture O is disabled.

Not e that the proposed hardware actually determ nes the TEXTUREO
and TEXTURELl i nput based on which texture is enabled. This neans
it isuptothe ICDto properly update the conbiner state when just
one texture is enabled. Since we will already have to do this to
track the standard Open@G texture environment for ARB multitexture,
we can do it for this extension too.

Shoul d the conbiners state be PushAttrib/PopAttrib' ed along with
the texture state?

RESOLUTI O\ YES.
Shoul d we advertise the LOD fractional input to the conbiners?
RESOLUTI ON: NO.

There will be a performance inpact when two conbi ner stages are
enabl ed versus just one stage. Should we nention that somewhere?

RESOLUTION: NO (But it is worth nmentioning in this issues
section.)

Shoul d the scal e and bias for the Conbi ner Qut put NV be i ndi cated
by enunerants or specified outright as floats?

RESOLUTI ON: ENUMERANTS. Wil e sonme future conbi ners m ght
support an arbitrary scale & bias specified as floats, NV10 j ust
does the enunerated options.

Shoul d a dot product be conputed in parralel with the sum of
product s?

RESOLUTI ON: NO. Language has been added ot the Conbi ner Qut put NV
di scussion saying that if either <abDotProduct> or <cdDot Product >
is true, then <sumQutput> nmust be G__DI SCARD.

The rationale for this is that we want to mnimze the nunber of
adders that are required to ease a transition to floating point.

New Procedures and Functi ons

Conbi ner Par anet er f vNV(GLenum pnane,
const GL.fl oat *parans);

Conbi ner Par anet eri vNV(GLenum pnane,
const GLint *parans);

149

‘Aelaudolid vIAQIAN

Copyright NVIDIA Corporation, 1999.

NVIDIA Proprietary.

NV_register_combiners

Conbi ner Par anet er f NV(GL.enum pnarne,
G.fl oat paran);

Conbi ner Par anet er i NV(GLenum pnarne,
Glint param;

Conbi ner | nput NV(GLenum st age,
GLenum portion,
GLenum vari abl e,
GLenum i nput ,
GLenum mappi ng,
GLenum conponent Usage) ;

Conbi ner Qut put NV(GL.enum st age,
GLenum portion,
GLenum abCQut put ,
GLenum cdCQut put ,
GLenum sunut put ,
GLenum scal e,
GL.enum bi as,
GLbool ean abDot Product ,
GLbool ean cdDot Product ,
GLbool ean muxSunj ;

Fi nal Conbi ner | nput N\V(G_.enum vari abl e,
GLenum i nput ,
GLenum mappi ng,
GLenum conponent Usage) ;

CGet Combi ner | nput Par anet er f vNV(GLenum st age,
GLenum portion,
GLenum vari abl e,
GLenum pnane,
G.fl oat *parans);

Get Combi ner | nput Par anet eri vNV(GLenum st age,
GLenum portion,
GLenum vari abl e,
GLenum pnane,
GLi nt *parans);

Get Combi ner Qut put Par anet er f vNV(G_Lenum st age,
GLenum portion,
GLenum pnane,
G.fl oat *parans);

Get Combi ner Qut put Par anet eri vNV(G_.enum st age,
GLenum portion,
GLenum pnane,
GLi nt *parans);

CGet Fi nal Conbi ner | nput Par anet er f vNV(GLenum var i abl e,

GLenum pnane,
G.fl oat *parans);

150

NVIDIA OpenGL Extension Specifications

NVIDIA OpenGL Extension Specifications NV_register_combiners

CGet Fi nal Conbi ner | nput Par anet eri vNV(GLenum var i abl e,
GLenum pnane,
G.fl oat *parans);

Tokens

Accepted by the <cap> paraneter of Enable, D sable, and |IsEnabled,
and by the <pnanme> paraneter of GCetBool eanv, Cetlntegerv,
Get Fl oat v, and Get Doubl ev:

REGQ STER_COMBI NERS_NV 0x8522

Accepted by the <stage> paraneter of Conbi nerlnput NV,

Conbi ner Qut put NV, Get Conbi ner | nput Par anet er f vNV,

CGet Combi ner | nput Par anet eri vNV, Get Conbi ner Qut put Par anet er f vV,
and Get Conbi ner Qut put Par anet eri vNV:

COMVBI NERO_NV 0x8550
COMBI NER1_NV 0x8551
COMBI NERZ_NV 0x8552
COMBI NER3_NV 0x8553
COMBI NER4_NV 0x8554
COMBI NER5_NV 0x8555
COMBI NER6_NV 0x8556
COMBI NER7_NV 0x8557

Accepted by the <variabl e> paraneter of Conbi nerl nput NV,
CGet Combi ner | nput Par anet er f vNV, and Get Conbi ner | nput Par anmet eri vNV:

VARl ABLE_A NV 0x8523
VARl ABLE_B_ NV 0x8524
VARl ABLE_C NV 0x8525
VARl ABLE_D NV 0x8526

Accepted by the <variabl e> paraneter of Final Conbi nerl nput NV,
Cet Fi nal Conbi ner | nput Par anet er f vNV, and
CGet Fi nal Conbi ner | nput Par anet eri vNV:

VARI ABLE_A NV
VAR ABLE_B_NV
VARI ABLE_C_NV
VAR ABLE_D_NV

VARl ABLE_E NV 0x8527
VARl ABLE_F_NV 0x8528
VARl ABLE_G NV 0x8529

151

‘Aelaudolid vIAQIAN

Copyright NVIDIA Corporation, 1999.

NVIDIA Proprietary.

NV_register_combiners NVIDIA OpenGL Extension Specifications

Accepted by the <input> paraneter of Conbinerlnput NV:

ZERO (not new)
CONSTANT_COLORO_NV 0x852a

CONSTANT_COLORL_NV 0x852b

FOG (not new)

PRI MARY_COLOR_NV 0x852c

SECONDARY_COLOR NV 0x852d

SPAREO_NV 0x852e

SPARE1_NV 0x852f

TEXTUREO _ARB (see ARB multitexture)
TEXTUREL_ARB (see ARB multitexture)

Accepted by the <mappi ng> paraneter of Conbi nerl nput NV:

UNSI GNED_| DENTI TY_NV 0x8536
UNSI GNED_| NVERT_NV 0x8537
EXPAND_NORMAL_NV 0x8538
EXPAND_NEGATE_NV 0x8539
HALF_BI AS_NORVAL_NV 0x853a
HALF_BI AS_NEGATE_NV 0x853b
SI GNED_| DENTI TY_NV 0x853cC
SI GNED_NEGATE_NV 0x853d

Accepted by the <input> paraneter of Final Conbi nerl nput NV:

ZERO (not new)
CONSTANT_COLORO_NV

CONSTANT_COLORL_NV

FOG (not new)

PRI MARY_COLOR_NV

SECONDARY_COLOR NV

SPAREO_NV

SPARE1_NV

TEXTUREO _ARB (see ARB multitexture)
TEXTUREL1_ARB (see ARB multitexture)
E_TIMES_F_NV 0x8531
SPAREO_PLUS_SECONDARY_COLOR_NV 0x8532

Accepted by the <mappi ng> paraneter of Fi nal Conbi nerl nput NV:

UNSI GNED_| DENTI TY_NV
UNSI GNED_| NVERT_NV

Accepted by the <scal e> paraneter of Conbi ner Qut put NV:

NONE (not new)
SCALE_BY_TWO NV 0x853e
SCALE_BY_FOUR_NV 0x853f
SCALE_BY_ONE_HALF_NV 0x8540

Accepted by the <bias> paranmeter of Conbi ner Qut put NV:

NONE (not new)
Bl AS_BY_NEGATI VE_ONE_HALF_NV 0x8541

152

NVIDIA OpenGL Extension Specifications NV_register_combiners

Accepted by the <abQut put>, <cdQutput>, and <sunfut put > par aneter
of Combi ner Qut put NV:

DI SCARD NV 0x8530
PRI MARY_COLOR_NV
SECONDARY_COLOR_NV

SPAREO_NV
SPARE1_NV
TEXTUREO _ARB (see ARB multitexture)
TEXTUREL1_ARB (see ARB multitexture)

Accepted by the <pnanme> paraneter of GetConbi nerl nput ParaneterfvNV/
and Get Conbi ner | nput Par anet eri vNV:

COMBI NER_I NPUT_NV 0x8542
COMVBI NER_MAPPI NG_NV 0x8543
COMVBI NER_COVPONENT_USAGE_NV 0x8544

Accepted by the <pnane> paraneter of Get Conbi ner Qut put Par anet er f vNV
and Get Conbi ner Qut put Par anet eri vNV:

COVBI NER_AB_DOT_PRODUCT NV 0x8545
COVBI NER_CD_DOT_PRODUCT_NV 0x8546
COVBI NER_MUX_SUM NV 0x8547
COVBI NER_SCALE_NV 0x8548
COVBI NER_BI AS_NV 0x8549
COVBI NER_AB_OUTPUT_NV 0x854a
COVBI NER_CD_OUTPUT_NV 0x854b
COVBI NER_SUM OUTPUT _NV 0x854c

Accepted by the <pname> paraneter of Conbi nerParaneterfvNV,
Conbi ner Par anet eri vNV, GCet Bool eanv, GetDoubl ev, GetFloatv, and
Cet | nt egerv:

CONSTANT_COLORO_NV
CONSTANT_COLORL_NV

Accepted by the <pname> paraneter of Conbi nerParaneterfvNV,
Conbi ner Par anet eri vNV, Conbi ner Par anet er f NV, Conbi ner Par anet eri NV,
CGet Bool eanv, Get Doubl ev, GetFl oatv, and CGetlntegerv:

NUM_GENERAL_ COVBI NERS_NV 0x854e
COLOR_SUM CLAMP_NV 0x854f

Accepted by the <pnanme> paraneter of GetFi nal Conbi nerl nput Paranet er f vNvV
and GCet Fi nal Conbi ner | nput Par anmet eri vNV:

COVBI NER_| NPUT_NV
COVBI NER_MAPPI NG_NV
COVBI NER_COVPONENT _USAGE_NV

Accepted by the <pnanme> paraneter of GetBool eanv, GetDoubl ev,
Cet Fl oatv, and Getl nt egerv:

MAX_GENERAL_COVBI NERS_NV 0x854d

153

‘Arejanidoid VIAIAN

Copyright NVIDIA Corporation, 1999.

NVIDIA Proprietary.

NV_register_combiners NVIDIA OpenGL Extension Specifications

Additions to Chapter 2 of the 1.2 Specification (OpenG. Qperation)
None
Additions to Chapter 3 of the 1.2 Specification (Rasterization)
-- Figure 3.1 "Rasterization" (page 58)
+ Change the "Texturing" block to say "Texture Fetching"

+ Insert a new bl ock between "Texture Fetching” and "Col or Sunt
Nane t he new bl ock "Texture Environment Application”

+ Insert a new block after "Texture Fetching”. Nane the new bl ock
"Regi ster Conbi ners Application".

+ The output of the "Texture Fetching" stage feeds to both "Texture
Envi ronnent Application” and "Regi ster Conbi ners Application”

+ The input for "Color Sumt comes from "Texture Environnent
Application".

+ The output to "Fragnents” is switched (controlled by
Di sabl e/ Enabl e REG STER_COMBI NERS_NV) between t he out put of "Fog"
and "Regi ster Conbi ners Application”

Essentially, when register conbiners are enabled, the entire standard
texture environment application, color sum and fog bl ocks are
replaced with the single register conbiners block. [Note that this
is different fromhow the NV_texture_env_conbi ne4 extension works;
that extension controls the texture environnent application

bl ock, but still uses the standard col or sum and fog bl ocks.]

-- NEW Section 3.8.12 "Regi ster Conbi ners Application”

"In parallel to the texture application, color sum and fog processes
described in sections 3.8.10, 3.9, and 3.10, regi ster conbi ners provide
a nmeans of computing fcoc, the final conbiner output color, for

each fragnent generated by rasterization

The regi ster conbiners consist of two or nore general conbiner stages
arranged in a fixed sequence ordered by each conbi ner stage's nunber.
An i npl enentati on supports a maxi mum nunber of general conbiners
stages, which may be queried by calling Getlntegerv with the synbolic
const ant MAX_GENERAL_COMBI NERS_NV. | npl enent ati ons mnust

support at |east two general conbiner stages. The general conbiner
stages are named COVBI NERO_Nv, COMBI NER1_NV, and so on

Each general conbiner in the sequence receives its inputs and
conputes its outputs in an identical manner. At the end of the
sequence of general conbiner stages, there is a final conbiner stage
that operates in a different manner than the general conbi ner stages.
The general conbiner operation is described first, followed by a
description of the final conbiner operation

Each conbi ner stage (the general conbiner stages and the fina
conbi ner stage) has an associ ated conbi ner register set. Each

154

NVIDIA OpenGL Extension Specifications NV_register_combiners

conbi ner register set contains <n> RGBA vectors with conmponents
ranging from-1.0 to 1.0 where <n> is 8 plus the naxi mum nunber
of active textures supported (that is, the inplenentation's val ue
for MAX_ACTI VE_TEXTURES ARB). The conbiner register set entries
are listed in the table NV_register_conbiners. 1.

[Table NV_register_conbiners.1]

Initial Qut put
Regi st er Name Val ue Ref erence St at us
ZERO 0 - read only
CONSTANT _COLORO_NV cccO Section 3.8.12.1 read only
CONSTANT_COLOR1_NV cccl Section 3.8.12.1 read only
FOG cf Section 3.10 read only
PRI MARY _COLOR_NV cpri Section 2.13.1 read/wite
SECONDARY _COLOR_NV csec Section 2.13.1 read/wite
SPAREO NV see below Section 3.8.12 read/wite
SPAREL NV undefi ned Section 3.8.12 read/wite
TEXTUREO _ARB CT0 Figure E. 2 read/ wite
TEXTUREL1_ARB CT1 Figure E. 2 read/ wite
TEXTURE<i >_ARB CT<i > Figure E. 2 read/ wite

The regi ster set of COVBI NERO_NV, the first conbi ner stage,
is initialized as described in table NV_register_conbiners. 1.

The initial value of the al pha portion of register SECONDARY_COLOR_NV
is undefined. The initial value of the al pha portion of register
SPAREO_NV is the al pha conponent of texture O if texturing is

enabl ed for texture 0; however, the initial value of the RG portion
SPAREO_NV i s undefined. The initial value of the SPARE1_NV register
is undefined. The initial of registers TEXTUREO ARB, TEXTURE1l_ARB,
and TEXTURE<i > ARB are undefined if texturing is not enabled for
textures 0, 1, and <i>, respectively.

3.8.12.1 Conbi ner Paraneters

Conbi ner paraneters are specified by
Conbi ner Par anet er f vNV(GLenum pnane, const G.fl oat *parans);
Conbi ner Par anet eri vNV(GL.enum pnane, const GLint *parans);
Conbi ner Par anet er f NV(GLenum pname, GL.fl oat param;
Conbi ner Par anet eri NV(GLenum pnane, GLint param;

<pnane> is a synbolic constant indicating which paranmeter is to be
set as described in the table NV_register_conbiners. 2:

[Table NV_register_conbiners.2]

Nunber
Par anet er Nane of val ues Type
cccO CONSTANT _COLORO_NV 4 col or
cccl CONSTANT _COLOR1_NV 4 col or
ngc NUM_GENERAL _COVBI NERS_NV 1 positive integer
csc COLOR_SUM CLAMP_NV 1 bool ean

155

‘Arejanidoid VIAIAN

Copyright NVIDIA Corporation, 1999.

NVIDIA Proprietary.

NV_register_combiners NVIDIA OpenGL Extension Specifications

<params> is a pointer to a group of values to which to set the

i ndi cated paraneter. <paran> is sinply the indicated paraneter.

The nunber of values pointed to depends on the parameter being

set as shown in the table above. Color paraneters specified with
Conbi ner Par aneter *NV are converted to fl oating-point values (if
specified as integers) as indicated by Table 2.6 for signed integers.
The floating-point color values are then clanped to the range [0, 1].

The val ues cccO and cccl naned by CONSTANT_COLORO_NV and
CONSTANT_COLOR1_NV are constant colors available for inputs to the
conbi ner stages. The value ngc named by NUM GENERAL_COVBI NERS NV

is a positive integer indicating how many general conbi ner stages are
active, that is, how many general conbiner stages a fragnent shoul d
be processed by. Setting ngc to a value |ess than one or

greater than the val ue of MAX_GENERAL_COVBI NERS NV generates an

| NVALI D VALUE error. The value csc nanmed by COLOR _SUM CLAMP_NV

is a bool ean described in section 3.8.12. 3.

3.8.12.2 General Conbiner Stage Operation
The conmmand

Conbi ner | nput NV(GLenum st age,
GLenum portion,
GLenum vari abl e,
GLenum i nput ,
GLenum mappi ng,
GLenum conponent Usage) ;

controls the assignment of all the general conbiner input variables.
For the RGB conbi ner portion, these are Argb, Brgb, Crgb, and
Drgb; and for the conbiner al pha portion, these are Aa, Ba, Ca,
and Da. The <stage> paraneter is a synbolic constant of the form
COMBI NER<i > NV, indicating that general conbiner stage <i>is to
be updated. The constant COVBI NER<i > NV = COMVBI NERO_NV + <i>
where <i> is in the range 0 to <k>-1 and <k> is the inplenentation
dependent val ue of MAX COVBI NERS_NV. The <portion> paraneter

may be either RGB or ALPHA and determ nes whether the RGB col or
vector or al pha scalar portion of the specified conbiner stage is
updated. The <variabl e> paranmeter may be one of VAR ABLE A NV,
VARI ABLE B NV, VARI ABLE C NV, or VARI ABLE D NV and determn nes

whi ch respective variable of the specified conbiner stage and
conbi ner stage portion is updated.

The <i nput>, <mapping>, and <conponent Usage> paraneters specify

t he assignment of a value for the input variable indicated by
<stage>, <portion> and <variable> The <input> paraneter nmay be
one of the register nanes fromtable NV_register_conbiners. 1.

The <component Usage> paraneter nmay be one of RGB, ALPHA, or BLUE.

VWhen the <portion> paraneter is RGB, a <conponentUsage> paraneter

of REB indicates that the RG portion of the indicated register

shoul d be assigned to the RG portion of the conbiner input variable,
whi | e an ALPHA <conponent Usage> paraneter indicates that the

al pha portion of the indicated register should be replicated across
the RGB portion of the conbiner input variable.

156

NVIDIA OpenGL Extension Specifications NV_register_combiners

VWhen the <portion> paranmeter is ALPHA, the <conponent Usage>
paranmeter of ALPHA indicates that the al pha portion of the indicated
regi ster should be assigned to the al pha portion of the conbiner

i nput variable, while a BLUE <conmponent Usage> par aneter indicates
that the blue conponent of the indicated register should be assigned
to the al pha portion of the conbiner input variable.

VWhen the <portion> paraneter is ALPHA, a <conponent Usage> par anet er
of RGB generates an | NVALI D OPERATION error. Wen the <portion>
paranmeter is RGB, a <conponent Usage> paraneter of BLUE generates
an | NVALI D_OPERATI ON error.

VWhen the <portion> paraneter is ALPHA, an <i nput> paraneter of FOG
generates an | NVALI D OPERATION error. The al pha conponent of the
fog register is only available in the final conbiner.

Before the value in the register named by <input> is assigned to the
specified input variable, a range mapping is performed based on
<mappi ng>. The mappi ng may be one of the tokens fromthe table
NV_regi st er _conbi ners. 3.

[Table NV_register_conbiners.3]

Mappi ng Nane Mappi ng Functi on

UNSI GNED_| DENTI TY_NV max(0.0, e)

UNSI GNED_| NVERT_NV 1.0 - min(max(e, 0.0), 1.0)
EXPAND_NORMAL_NV 2.0 * max(0.0, e) - 1.0
EXPAND_NEGATE_NV -2.0 * max(0.0, e) + 1.0
HALF_BI AS_NORMAL_NV max(0.0, e) - 0.5

HALF_BI AS_NEGATE_NV -max(0.0, e) + 0.5

S| GNED_| DENTI TY_NV e

S| GNED_NEGATE_NV -e

Based on the <mappi ng> paraneter, the mapping function in the table
above is evaluated for each el ement <e> of the input vector before
assigning the result to the specified input variable. Note that
the mapping for the RG and al pha portion of each input variable

is distinct.

Each general conbi ner stage conmputes the followi ng ten expressions
based on the val ues assigned to the variables Argb, Brgb, Crgb,
Drgb, Aa, Ba, Ca, and Da as determ ned by the conbi ner state set
by Conbi ner | nput NV.

["gcc" stands for general conbiner conputation.]

gcclrgb = [Argb[r]*Brgb[r], Argb[g]*Brgb[g], Argb[b]*Brgb[b]]

gcc2rgbh = [Argb[r]*Brgb[r] + Argb[g]*Brgb[g] + Argb[b]*Brgb[b],
Argb[r]*Brgb[r] + Argb[g]*Brgb[g] + Argb[b]*Brgb[b],
Argb[r]*Brgb[r] + Argb[g]*Brgb[g] + Argb[b]*Brgb[b]]

gece3rgb = [Crgb[r]*Drgb[r], Crgb[g]*Drgb[g], Crgb[b]*Drgb[b]]

157

‘Arejalidoid VIAIAN

NVIDIA Corporation, 1999.

NV_register_combiners

gccargb = [Crgb[r]*Drgb[r] + Crgb[g]*Drgb[g] + Crgb[b]*Drgb[b],
Crgb[r]*Drgb[r] + Crgb[g]*Drgb[g] + Crgb[b]*Drgb[b],

Crgb[r]*Drgb[r] + Crgb[g]*Drgb[g] + Crgb[b]*Drgb[b]]

gccbrgb = geclrgb + gecc3rgb

gcc6rgb = gcclrgb or gcc3rgb [see bel ow
gccla = Aa * Ba

gcc2a = Ca * Da

gcc3a = gccla + gcc3a

gccda gccla or gcc3a [see bel ow

The conputati on of gcc6rgb and gccda invol ves a special "or"
operation. This operation evaluates to the right-hand operand if the
al pha conponent of the conbiner’'s SPAREO_NV register is |ess than
0.5; otherwi se, the operation evaluates to the |eft-hand operand.

The conmand

Conbi ner Qut put NV(GL.enum st age,
GLenum portion,
GLenum abQut put ,
GLenum cdCQut put ,
GLenum sunut put ,
GLenum scal e,
G_.enum bi as,
GLbool ean abDot Product ,
GL.bool ean cdDot Product ,
GLbool ean muxSunj ;

control s the general combiner output operation including designating
the register set |ocations where results of the general conbiner's
three conputations are witten. The <stage> and <portion>
paraneters take the sanme val ues as the respective paraneters for
Conbi ner | nput NV.

If the <portion> paraneter is ALPHA, specifying a non-FALSE val ue
for either of the paraneters <abDot Product> or <cdDot Product >,
generates an | NVALI D VALUE error.

I f the <abDot Product > or <cdDot Product > paraneter is non-FALSE,
t he val ue of the <sumfut put> paraneter nust be G._DI SCARD NV,
ot herwi se, generate an | NVALI D _OPERATI ON error.

The <scal e> paraneter nust be one of NONE, SCALE_BY_TWD NV,
SCALE _BY _FOUR NV, or SCALE BY ONE HALF_NV and specifies the

val ue of the conbi ner stage's portion scale, either cscalergb or
cscal ea dependi ng on the <portion> paranmeter, to 1.0, 2.0, 4.0,
or 0.5, respectively.

The <bi as> paraneter nust be either NONE or

Bl AS_BY_NEGATI VE_ONE_HALF_NV and specifies the value of the
conbi ner stage's portion bias, either cbiasrgb or chiasa dependi ng

158

NVIDIA OpenGL Extension Specifications

NVIDIA OpenGL Extension Specifications NV_register_combiners

on the <portion> paraneter, to 0.0 or -0.5, respectively. |If <scale>
is either SCALE BY ONE HALF NV or SCALE BY FOUR NV, a <bi as> of
Bl AS_BY_NEGATI VE_ONE_HALF_NV generates an | NVALI D_OPERATI ON error.

I f the <abDot Product> paraneter is FALSE, then

if <portion> is RGB, out 1rgb
if <portion> is ALPHA, out la

max(m n(gcclrgbh + chiasrgb) * cscalergbh, 1), -1)
max(mn((gccla + chiasa) * cscalea, 1), -1)

ot herw se <portion> nust be RGB and
out Irgh = max(m n((gcc2rgb + chiasrgb) * cscalergb, 1), -1)
I f the <cdDot Product> paraneter is FALSE, then

if <portion> is RGB, out 2rgbh
if <portion> is ALPHA, out 2a

max(mn((gcc3rgb + chiasrgb) * cscalergb, 1), -1)
max(m n((gcc2a + chiasa) * cscalea, 1), -1)

ot herwi se <portion> nust be RGEB so
out 2rgh = max(m n((gcc4rgb + chiasrgb) * cscalergb, 1), -1)

If the <muxSun®» paraneter is FALSE, then

if <portion> is RGB, out 3rgh = max(m n((gccbrgb + chiasrgb) * cscalergb, 1), -1)
if <portion> is ALPHA, out 3a = max(mn((gcc3a + chiasa) * cscalea, 1), -1)

ot herw se
if <portion> is RGB, out 3rgh = max(m n((gcc6rgb + chiasrgb) * cscalergb, 1), -1)
if <portion> is ALPHA, out 3a = max(mn((gccda + chiasa) * cscalea, 1), -1)

out 1rgb, out2rgb, and out3rgb are witten to the RG portion of

conbi ner stage's registers nanmed by <abQut put>, <cdQutput>, and
<sumQut put > respectively. outla, out2a, and out3a are witten to

t he al pha portion of conbiner stage's registers named by <abCut put >,
<cdCut put >, and <sumQut put > respectively. The paraneters <abQut put >,
<cdCut put >, and <sumQut put > nust be either DI SCARD NV or one of

the regi ster names fromtable NV_regi ster_conbiners.1 that has an out put
status of read/wite. |If an output is set to DI SCARD NV, that

output is not witten to any register. The error | NVALI D_OPERATI ON
is generated if <abCQutput>, <cdQutput> and <sunfutput> do not all
nanme uni que regi ster nanes (though multiple outputs to DI SCARD NV
are | egal).

VWhen the general conbiner stage's register set is witten based on
the conputed outputs, the updated register set is copied to the
regi ster set of the subsequent conbiner stage in the comnbiner
sequence. Copi ed undefined val ues are |ikew se undefi ned.

The subsequent conbiner stage followi ng the |last active genera
conbi ner stage, indicated by the general conbiner stage's numnber
bei ng equal to ngc-1, in the sequence is the final conbiner

stage. In other words, the nunber of general conbiner stages

each fragnent is transforned by is determ ned by the val ue of
NUM_GENERAL_COVBI NERS_NV.

3.8.12.3 Final Conbiner Stage Operation
The final conbiner stage operates differently fromthe general
conbi ner stages. Wiile a general conbiner stage updates its register

set and passes the register set to the next conbiner stage, the final
conbi ner outputs an RGBA col or fcoc, the final conbiner output color.

159

‘Arejalidoid VIAIAN

NV_register_combiners NVIDIA OpenGL Extension Specifications

The final conbiner stage is capable of applying the standard OpenG
col or sum and fog operations, but has the configurability to be
used for other purposes.

The conmand

Fi nal Conbi ner | nput NV(G_.enum vari abl e,
GLenum i nput ,
GLenum mappi ng,
GLenum conponent Usage) ;

controls the assignment of all the final conbiner input variables.
The variables A, B, C, D, E, and F are RGB vectors. The variable
Gis an al pha scalar. The <variabl e> paraneter nmay be one of

VARI ABLE_A NV, VAR ABLE B NV, VARI ABLE C NV, VARI ABLE D Nv,

VARI ABLE E NV, VARI ABLE F NV, and VARI ABLE G NV, and determn nes
whi ch respective variable of the final conbiner stage is updated.

The <i nput>, <mapping>, and <conponent Usage> paraneters specify
t he assignment of a value for the input variable indicated by
<vari abl e>.

The <i nput> paraneter may be any one of the register names fromtable
NV_regi ster_conbiners.1 or be one of two pseudo-regi ster nanes, either
E_TIMES_F_NV or SPAREO_PLUS SECONDARY_COLOR _NV. The val ue of

E TIMES F NV is the product of the value of variable E tines the

val ue of variable F. The value of SPAREO PLUS SECONDARY COLOR NV

is the value the SPAREO_NV register plus the value of the
SECONDARY_COLOR NV register. |If csc, the color sumclanp, is

non- FALSE, the val ue of SPAREO_PLUS SECONDARY_COLOR NV is

first clanped to the range [0,1]. The al pha conmponent of the
E_TIMES_F_NV and SPAREO_PLUS SECONDARY_COLOR NV is al ways zero.

When <variable> is one of VARIABLE E NV, VAR ABLE F Nv,

or VARIABLE G NV and <input> is either E TIMES F_NV or
SPAREO_PLUS_ SECONDARY_COLCOR_NV, generate an | NVALI D_OPERATI ON
error. Wen <variable> is VARIABLE A NV and <input> is
SPAREO_PLUS SECONDARY_COLCOR_NV, generate an | NVALI D_OPERATI ON
error.

The <component Usage> paraneter may be one of RGB or ALPHA

VWhen the <variabl e> paraneter is not VARIABLE G NV, a

<conponent Usage> paraneter of RGB indicates that the RG portion of
the indicated register should be assigned to the RGB portion of the
conbi ner input variable, while an ALPHA <conponent Usage> par anet er

i ndi cates that the al pha portion of the indicated register should
be replicated across the RG portion of the conbiner input variable.

VWhen the <variabl e> paraneter is VARIABLE G NV, a <conponent Usage>
paranmeter of ALPHA indicates that the al pha portion of the indicated
regi ster should be assigned to the al pha portion of the conbiner

i nput variable, while a <conponentUsage> paraneter of RGB generates
an | NVALI D_OPERATI ON error.

160

NVIDIA OpenGL Extension Specifications

VWhen the <input> paraneter is either E TIMES F NV or
SPAREO_PLUS_SECONDARY_COLOR_NV and t he <component Usage>
paranmeter is ALPHA, generate | NVALI D _OPERATI ON.

Before the value in the register named by <input> is assigned to
the specified input variable, a range mapping is perforned based
on <mappi ng>. The mappi ng may be either UNSI GNED | DENTI TY_NV

or UNSI GNED | NVERT_NV and operates as specified in table
NV_regi st er _conbi ners. 3.

The final conbiner stage conputes the foll ow ng expressi on based
on the values assigned to the variables A, B, C D E F, and G as
determ ned by the conbiner state set by Final Conmbi nerl nput NV

fcoc = [mn(ab[r] + iac[r] + Dr], 1.0),
mn(ab[g] + iac[g] + Og], 1.0),
mn(ab[b] + iac[b] + Odb], 1.0),
G]
wher e
ab =1[Alr]*B[r], Alg]*B[g], Alb]*B[Db]]
tac =[(1.0 -A[r])*dr], (1.0 - Alg])*(g], (1.0 - Ab])*Cb]]

3.8.12.4 Required State

The state required for the register conbiners is a bit indicating
whet her register conbiners are enabl ed or disabled, an integer

i ndi cati ng how nmany general conbiners are active, a bit indicating
whet her or not the color sumclanp to 1 should be perfornmed, two
RGBA constant col ors, <n> sets of general conbiner stage state where
<n> is the value of MAX GENERAL_COMBI NERS NV, and the fina

conbi ner stage state. The per-stage general conbiner state consists
of the RGB input portion state and the al pha input portion state.
Each portion (RG and al pha) of the per-stage general conbiner
state consists of: four integers indicating the input register for
the four variables A, B, C, and D, four integers to indicate each
vari abl e's range mapping; four bits to indicate whether to use the
al pha conponent of the input for each variable; a bit indicating
whet her the AB dot product should be output; a bit indicating

whet her the CD dot product should be output; a bit indicating

whet her the sum or nux out put should be output; two integers to
mai ntai n the output scale and bias enunerants; three integers to
mai ntain the output register set nanes. The final conbiner stage
state consists of seven integers to indicate the input register
for the seven variables A, B, C D, E, F, and G seven integers to
i ndi cate each variable's range mappi ng; and seven bits to indicate
whet her to use the al pha conmponent of the input for each variable.

The general conbiner per-stage state is initialized as descri bed
in table NV_register_conbiners. 4.

161

NV_register_combiners

‘Arejalidoid VIAIAN

NV_register_combiners

[Table NV_register_conbiners.4]

NVIDIA OpenGL Extension Specifications

Copyright NVIDIA Corporation, 1999.

NVIDIA Proprietary.

Conmponent
Portion Vari abl e I nput Usage Mappi ng
RGB A PRI MARY_COLOR_NV RGB UNSI GNED_| DENTI TY_NV
RGB B TEXTURE#_ARB RGB UNSI GNED_I DENTI TY_NV
RGB C ZERO RGB UNSI GNED_| DENTI TY_NV
RGB D ZERO RGB UNSI GNED_I DENTI TY_NV
al pha A PRI MARY_COLOR_NV ALPHA UNSI GNED_| DENTI TY_NV
al pha B TEXTURE#_ARB ALPHA UNSI GNED_I DENTI TY_NV
al pha C ZERO ALPHA UNSI GNED_| DENTI TY_NV
al pha D ZERO ALPHA UNSI GNED_I DENTI TY_NV

where # is the general conbiner stage nunber.

The final
NV_regi ster

conbi ner stage state is initialized as described in table
_conbi ners. 5.

[Table NV_register_conbiners.5]

Conmponent
Vari abl e I nput Usage Mappi ng
A FOG ALPHA UNSI GNED_| DENTI TY_NV
B SPAREO_PLUS_SECONDARY_COLOR_NV RGB UNSI GNED_I DENTI TY_NV
C FOG RGB UNSI GNED_| DENTI TY_NV
D ZERO RGB UNSI GNED_I DENTI TY_NV
E ZERO RGB UNSI GNED_| DENTI TY_NV
F ZERO RGB UNSI GNED_I DENTI TY_NV
G SPAREO_NV ALPHA UNSI GNED_| DENTI TY_NV'

-- NEW Section 3.8.11 "Antialiasing Application”

Insert the foll owi ng paragraph BEFORE the section's first paragraph:
"Regi ster conbiners are enabled or disabled using the generic Enable
and Di sabl e commands, respectively, with the synbolic constant
REGQ STER COMBI NERS_NV. |If the register conbiners are enabled (and not
in color index node), the fragnment's color value is replaced with fcoc,
the final conbiner output color, conputed in section 3.8.12; otherw se,
the fragnment's color value is the result of the fog application
in section 3.10."

Additions to Chapter 4 of the 1.2 Specification (Per-Fragnment Operations
and the Franme Buffer)

None
Additions to Chapter 5 of the 1.2 Specification (Special Functions)
None
Additions to Chapter 6 of the 1.2 Specification (State and State Requests)

-- Section 6.1.3 "Enunerated Queries”

Change the first two sentences (page 182) to say:

162

NVIDIA OpenGL Extension Specifications NV_register_combiners

"Qt her commands exi st to obtain state variables that are identified by
a category (clip plane, light, material, conbiners, etc.) as well as
a synbolic constant. These are"

Add to the bottomof the list of function prototypes (page 183):

voi d Get Conbi ner | nput Par anet er f yNV(GLenum st age, GLenum porti on,
GLenum vari abl e,
GLenum pname, const G.fl oat *parans);
voi d Get Conbi ner | nput Par anet eri vNV(GLenum st age, GLenum porti on,
GLenum vari abl e,
GL.enum pnane, const G.int *parans);
voi d Get Conbi ner Qut put Par anet er f vNV(GLenum st age, G_enum porti on,
GLenum pname, const G.fl oat *parans);
voi d Get Conbi ner Qut put Par anet eri vNV(GLenum st age, G_enum porti on,
GLenum pname, GLint *parans);
voi d Cet Fi nal Conbi ner | nput Par anet er f vNV(GLenum vari abl e, G.enum pnane,
const GL.fl oat *parans);
voi d Cet Fi nal Conmbi ner | nput Par anet eri vNV(GLenum vari abl e, G.enum pnane,
const GL.fl oat *parans);

Add the follow ng paragraph to the end of the section (page 184):

"The Get Conbi ner | nput Par anet er f vV,

CGet Combi ner | nput Par anet eri vNV, Get Conbi ner Qut put Par anet er f vV,

and Get Conbi ner Qut put Par anet eri vNV par anet er <stage> may be one of
COMBI NERO_Nv, COWVBI NER1_NV, and so on, indicating which general
conbi ner stage to query. The Get Conbi nerl nput Paranet erf vNV,

CGet Combi ner | nput Par anet eri vNV, Get Conbi ner Qut put Par anet er f vV,

and Get Conbi ner Qut put Par anet eri VNV paraneter <portion> may be
either REB or ALPHA, indicating which portion of the general

conbi ner stage to query. The Get Conbi nerl nput Paranet er f vNV

and Get Conbi ner | nput Par anet eri vNV par anet er <vari abl e> may

be one of VARIABLE_A NV, VAR ABLE_B NV, VARI ABLE_C NV,

or VARI ABLE D NV, indicating which variable of the general

conbi ner stage to query. The GCetFi nal Conmbi ner | nput Par anmet er f vV
and GCet Fi nal Conbi ner | nput Par anet eri vNV par anet er <vari abl e> may be one
of VARI ABLE A NV, VARI ABLE B NV, VARI ABLE C NV, VARI ABLE D Nv,
VARI ABLE_E_NV, VARI ABLE F_NV, or VARI ABLE_G NV."

Additions to the GX Specification
Not done yet.
Errors
I NVALI D_VALUE i s generated when Conbi ner Par anet er f vNV
or Conbi nerParaneterivNV is called with <pnanme> set to
NUM_GENERAL_COVBI NERS and t he val ue pointed to by <parans>
is less than one or greater or equal to the value of
MAX_GENERAL _COVBI NERS_NV.
| NVALI D_OPERATI ON i s gener ated when Conbi nerlnputNV is called

wi th a <conponent Usage> paraneter of RGB and a <portion> paraneter
of ALPHA.

163

‘Arejanidoid VIAIAN

Copyright NVIDIA Corporation, 1999.

NVIDIA Proprietary.

NV_register_combiners

| NVALI D_OPERATI ON i s generated when Conbi nerlnputNV is called
wi th a <conponent Usage> paraneter of BLUE and a <portion> paraneter
of RGB.

I NVALI D_OPERATI ON i s generated When ConbinerlnputNV is called with
a <portion> paraneter of ALPHA and an <i nput> paraneter of FOG

| NVALI D VALUE i s generated when Conbi nerQutputNV is called with
a <portion> paraneter of ALPHA, but a non-FALSE val ue for either
of the parameters <abDot Product> or <cdDot Product >.

I NVALI D_OPERATI ON i s generated when Conbi nerQutputNV is called with
a <scal e> of either SCALE BY TWO NV or SCALE BY FOUR NV and a
<bi as> of Bl AS_BY_NEGATI VE_ONE_HALF_NV.

I NVALI D_OPERATI ON i s generated when Comnbi nerQutputNV is called such
t hat <abQut put>, <cdQutput>, and <sumQutput> do not all nane uni que
regi ster names (though nultiple outputs to DI SCARD NV are |egal).

I NVALI D_OPERATI ON i s gener at ed when Fi nal Combi ner Qut put NV
is called where <variable> is one of VAR ABLE E NV,

VARI ABLE_F NV, or VARI ABLE G NV and <input>is E_TIMES F_NV
or SPAREO_PLUS SECONDARY_COLOR_NV.

I NVALI D_OPERATI ON i s gener at ed when Fi nal Combi ner Qut put NV
is called where <variable> is VARIABLE A NV and <input> is
SPAREO_PLUS_SECONDARY_COLOR_NV.

| NVALI D_OPERATI ON i s gener at ed when Fi nal Conmbi nerl nputNV is
called with VARIABLE G NV for <variabl e> and RG or BLUE for
<conponent Usage>.

| NVALI D_OPERATI ON i s generat ed when Fi nal Combi nerl nput NV is
call ed where the <input> paraneter is either E_TIMES F_NV or
SPAREO_PLUS_SECONDARY_COLOR_NV and t he <conponent Usage>
paraneter is ALPHA

I NVALI D_OPERATI ON i s generated when Conbi nerQutputNV is called with

ei t her <abDot Product > or <cdDot Product > assi gned non- FALSE and
<sumQut put> is not G._DI SCARD NV.

164

NVIDIA OpenGL Extension Specifications

NVIDIA OpenGL Extension Specifications NV_register_combiners

New St at e

-- (NEWtable 6.29, after p217)

Gt Val ue Type Gt Gonmand Initial Val ue Description Sec Atribute
REQ STER GOMB NSRS NV B | sEnabl ed Fal se regi ster 3811
text ure/ enabl e

conbi ners enabl e

NMGENTRAL OMBNERS V- Z+ Get I nt eger v 1 nunber of active 3.8.12.1 texture
conbi ner st ages

AR SMAAWP N B Get Bool eanv True whet her or not 3.8.12.1 texture
SPARED PLUS
SECONDARY
AR NV cl anps
conbi ner st ages

CONSTANT_ O R0 NV C GetH oatv 0,0,0,0 conbi ner constant 3.8.12.1 texture
color zero

CONSTANT_ GO (RL NV C GetH oatv 0,0,0,0 conbi ner constant 3.8.12.1 texture
col or one

GOMB NER | NPUT_NV Z8x#x2x4 Get Gonbi ner | nput Par anet er * NV see 3.8.12. 4 conbi ner i nput 3.8.12.2 texture
vari abl es

CGOMB NER GOMPONENT_LBAGE NV Z3x#x2x4 Get Gonbi ner | nput Par anet er * NV see 3.8.12. 4 use al pha for 3.8.12.2 texture
conbi ner i nput

GOMB NER MAPPL NG NV Z8x#x2x4 Get Gonbi ner | nput Par anet er * NV UNS G\ED | DENN TY_NV conpl enent 3.8.12.2 texture
conbi ner i nput

COMB NER AB DOT PRIDUCT NV Bx#x2 Get Goni ner Qut put Par anet er * NV Fal se out put AB dot 3.8.12.3 texture
product

COMB NER (D DOT PRIDUCT NV Bx#x2 Get Goni ner Qut put Par anet er * NV Fal se out put (D dot 3.8.12.3 texture
product

GOMB NER MX SIM NV Bx#x2 Get Goni ner Qut put Par anet er * NV Fal se out put nux sum 3.8.12.3 texture

COMB NER SCALE N\ 22x#x2 Get Goni ner Qut put Par anet er * NV NONE output scal e 3.8.12.3 texture

COMB NER B AS NV 22x#x2 Get Goni ner Qut put Par anet er * NV NONE output bi as 3.8.12.3 texture

GOMB NER AB QUTPUT_NV ZIx#x2 Get Goni ner Qut put Par anet er * NV 0O SCARD NV AB out put 3.8.12.3 texture
regi ster

COMB NER (D QJTPUT_NV ZIx#x2 Get Goni ner Qut put Par anet er * NV 0O SCARD NV @ out put 3.8.12.3 texture
regi ster

COMB NER SUM QUTPUT_NV ZIx#x2 Get Goni ner Qut put Par anet er * NV SPARED NV sum out put 3.8.12.3 texture
regi ster

GOMB NER | NPUT_NV Z10x7 Get A nal Gonoi ner | nput Par anet er*NV see 3.8.12. 4 final conii ner 3.8.12.4 texture
i nput

GOMB NER MAPPL NG NV 2x7 Get A nal Gonfoi ner | nput Par anet er*NvV UNSIG\ED | DENTT TY_ NV final conbi ner 3.8.12.4 texture
i nput nappi ng

COMB NER GOMPONENT_LBAGE V- Z2x7 Get A nal Gonoi ner | nput Par anet er*NV see 3.8.12. 4 use al pha for 3.8.12.4 texture
final conbi ner
i nput nappi ng

[where # is the value of MAX GENERAL_COVBI NERS NV]
New | npl ement ati on Dependent State

(table 6.24, p214) add the follow ng entry:

Get Val ue Type Get Command M ni mum Val ue Description Sec Attribute
MAX_GENERAL_COMBI NERS_NV Z+ Getlntegerv 2 Maxi mum num of 3.8.12 -

general conbi ner

st ages

NVI DI A I mpl ementation Details

The effective range of the RGE portion of the final combiner should
be be [0,4] if the color sumclanp is false. Excercising this
range requires assigning SPAREO_PLUS SECONDARY_COLOR NV to the D
variable and either B or Cor both Band C. In practice this is a
very unlikely configuration.

However due to a bug in the GeForce 256 and Quadro hardware, val ues

generated above 2 in the RGB portion of the final conbiner will be
conputed incorrectly. Subsequent NVIDI A GPUs have fixed this bug.

165

‘Arejaudold VIAIAN

Copyright NVIDIA Corporation, 1999.

NVIDIA Proprietary.

NV_texgen_emboss

NV_t exgen_enboss
Nane Strings

GL_NV_t exgen_enboss
Not i ce

Copyri ght NvI DI A Corporation,
NVI DI A Proprietary.

Ver si on
August 17, 1999
Nurnber
?7?

Dependenci es

ARB nul titexture.

1999.

NVIDIA OpenGL Extension Specifications

Witten based on the wording of the Open@ 1.2 specification and the

ARB nul titexture extension.

Overvi ew

Thi s extension provides a new texture coordi nate generati on node

suitable for

G ven two texture units,

coordi nates of a second texture unit
as a perturbation of a first texture unit
unit one less than the second texture unit).
and |ight vectors.
the Iight vector
vector to a specified Qpen@ light's position
is supplied by the second texture unit's current texture
The perturbation is al so scal ed by program supplied

based on the normal, tangent,
is supplied by gl Normal

vect or
coordi nat e.
scal i ng constants.

mul titexture-based enbossing (or

bunp mappi ng) effects.

this extension generates the texture
(an odd-nunbered texture unit)

(an even-nunbered texture
The perturbation is
The normal vector
is supplied as a direction
and the tanget

If both texture units are bound to the sanme texture representing a

hei ght field, by subtracting the difference between the resulting two
filtered texels, progranms can achi eve a per-pixel enbossing effect.

| ssues

Can you do enbossing on any texture unit?
NO. Just odd nunmbered units. This neets a constraint of the

proposed hardware inplenentation, and because enbossing takes two
texture units anyway, it shouldn't be a real limtation

166

NVIDIA OpenGL Extension Specifications NV_texgen_emboss

Can you just enable one coordinate of a texture unit for enbossing?

Yes but NOT REALLY. The texture coordinate generation fornula

is specified such that only when ALL the coordi nates are enabl ed
and are using enbossing, do you get the enbossing conputation

O herwi se, you get undefined values for texture coordi nates enabl ed
for texture coordi nate generation and setup for enbossing.

Does the light specified have to be enabled for enbossing to work?

Yes, currently. But perhaps we could require inplementations to
enabl e a phantomlight (the Iight colors would be bl ack).

Coul d the enboss constant just be the reciprocal of the w dth and
hei ght of the texture units texture if that's what the programmer
will have it be nost of the tine?

NO. Too much work and there may be reasons for the programrer to
control this.

Open@.' s base texture environnment functionality isn't powerful enough
to do the subtraction needed for enbossing. Were would you get
power ful enough texture environnent functionality.

Anot her extension. Try NV_register_conbiners.
VWhat is the interpretation of CT?

For the purposes of enbossing, CT should be thought of as the
vertex's tangent vector. This tangent vector indicates the direction
on the "surface" where PCTs is not changing and PCTt is increasing.

Are the CT and PCT variables the user-supplied current texture
coor di nat es?

YES. Except when the texture unit's texture coordi nate eval uator
is enabl ed, then CT and PCT use the respective eval uated texture
coor di nat es.

Thi s extension specification's |anguage "Denote as CT the texture
unit's current texture coordinates"” and "Denote as PCT the previous
texture unit's current texture coordinates" refers to the "current
texture coordi nates"” Open@G. state which is the state specified

via gl TexCoord. Plus the exception for eval uators.

To be explicit, PCT is NOT the result of texgen or the texture
matrix. Likewise, CT is NOTI the result of texgen or the

texture matrix. PCT and CT are the respective texture unit's

eval uated texture coordinate if the vertex is evaluated with
texture coordi nate eval uation enabled, otherwise if the vertex is
generated via vertex arrays with the respective texture coordi nate
array enabl ed, the texture coordinate fromthe texture coordi nate
array, otherwi se the respective current texture coordinate is used.

New Procedures and Functi ons

None

167

‘Arejanidoid VIAIAN

NV_texgen_emboss NVIDIA OpenGL Extension Specifications

New Tokens

Accepted by the <parant paraneters of TexGend, TexGenf, and TexGeni
when <pnanme> paraneter i s TEXTURE GEN MODE:

EMBOSS_VAP_NV 0x855f
VWhen the <pnane> paraneter of TexCGendv, TexGenfv, and TexCeniv is
TEXTURE_GEN _MODE, then the array <paranms> may al so contain
EVMBOSS_VAP_NV.

Accepted by the <pnanme> paraneters of Get TexGendv, Get TexGenfyv,
CGet TexCGeni v, TexCGend, TexGendv, TexGenf, TexGenfv, TexGeni, and

TexCGeni v:
EMBOSS LI GHT NV 0x855d
EVMBOSS CONSTANT NV 0x855e

Additions to Chapter 2 of the 1.2 Specification (OpenG. Qperation)
-- Section 2.10.4 "CGenerating Texture Coordi nates"
Change the last sentence in the 1st paragraph to:

"I'f <pnanme> is TEXTURE_GEN _MODE, then either <paranms> points to
or <paranm® is an integer that is one of the synbolic constants
OBJECT_LI NEAR, EYE LI NEAR, SPHERE MAP, or EMBOSS MAP_NV. "

Add t hese paragraphs after the 4th paragraph:

"When used with a suitable texture, suitable explicit texture
coordi nates, a suitable (extended) texture environnment,

suitable lighting paraneters, and suitable enbossi ng paraneters,
calling TexGen with TEXTURE _GEN MODE i ndi cati ng EMBOSS MAP_NV

can simulate the lighting effect of enbossing on a pol ygon.

The error I NVALI D ENUM occurs when the active texture unit has an
even nunber.

Copyright NVIDIA Corporation, 1999.

NVIDIA Proprietary.

The enboss constant and enboss |ight paranmeters for controlling
t he EMBOSS MAP_NV node are specified by calling TexGen with pnane
set to EMBOSS _CONSTANT_NV and EMBOSS LI GHT_NV respectively.

VWhen pnane i s EMBOSS CONSTANT_NV, param or what parans points
tois a scalar value. An error INVALID ENUM occurs if pnane is
EMBOSS _CONSTANT_NV and coord is Ror Q An error | NVALI D ENUM

al so occurs if pname is EMBOSS _CONSTANT_NV and the active texture
unit nunber is even.

VWhen pnane is EMBOSS LI GHT_NV, param or what paranms points to is
a synbolic constant of the formLICGHTi, indicating that |ight i
is to have the specified paraneter set. An error |NVALI D ENUM
occurs if pname is EMBOSS LI GHT_NV and coord is Ror Q An error
| NVALI D_ENUM occurs if pnane is EMBOSS LI GHT_NV and the active
texture unit nunmber is even. An error |INVALID ENUM occurs if
pname is EMBOSS LI GHT_NV and the value i for LIGHTI is negative
or is greater than or equal to the value of MAX LI GHTS.

168

NVIDIA OpenGL Extension Specifications

| f TEXTURE_GEN _MODE i ndi cates EMBOSS MAP_NV, the generation function

for the coordinates S, T, R, and Qis conputed as foll ows.

Denote as L the light direction vector fromthe vertex's eye

position to the position of the Ilight specified by the coordinate's
EMBOSS LI GHT_NV state (the direction vector is conputed as descri bed

in Section 3.13.1).

Denote as N the current norrmal after transformation to eye
coor di nat es.

Denote as CT the texture unit's current texture coordi nates
transfornmed to eye coordinates by normal transformation (as
described in Section 3.10.3) and normali zed.

However, if the vertex is evaluated (as described in Section 5.1)
and the texture unit's texture coordinate map i s enabl ed, use the
texture unit's evaluated texture coordinate to conmpute CI.

Denote as B the cross product of N and the <s,t,r> vector of CT.

Bx = Ny*CTr - CTt*Nz
By = Nz*CTs - CITr*Nx
Bz = Nx*CTt - CTs*Ny

Denote as BN the nornalized version of the vector B.

BNx = Bx / sqrt(Bx*Bx + By*By + Bz*Bz);
BNy = By / sqrt(Bx*Bx + By*By + Bz*Bz);
BNz = Bz / sqrt(Bx*Bx + By*By + Bz*Bz);

Denote as T the cross product of B and N

Tx = B\y*Nz - Ny*BNz
Ty = BNz*Nx - Nz*BNx
Tz = BNX*Ny - Nx* BNy

Observe that BN and T are orthonornal.

Denote as PCT the previous texture unit's current texture
coordinates. If the nunmber of the texture unit for the texture
coordi nates being generated is n, then the previous texture unit
is texture unit nunber n-1. Note that nis restricted to be odd.

However, if the vertex is evaluated (as described in Section 5.1)
and the previous texture unit's texture coordinate map i s enabl ed,
use the previous texture unit's evaluated texture coordinate to
conmput e PCT.

Denote Ks as the S coordinate's EMBOSS CONSTANT NV state. Denote Kt

as the T coordinate's EMBOSS CONSTANT NV state. These constants
should typically be set to the reciprocal of the width and hei ght
respectively of the texture map used for enbossing.

169

NV_texgen_emboss

‘Arejanidoid VIAIAN

Copyright NVIDIA Corporation, 1999.

NVIDIA Proprietary.

NV_texgen_emboss NVIDIA OpenGL Extension Specifications

Denote E as fol | ows:

Es = PCTs + Ks * (Lx*BNx + Ly*BNy + Lz*BNz) * PCIq
Et = PCTt - Kt * (Lx*Tx + Ly*Ty + Lz*Tz) * PCIq

Er = PCTr

Eq = PCTqg

Then the value assigned to an s, t, r, and q coordi nates are Es,
Et, Er, and Eq respectively. However, for this assignnent to
occur, the following three conditions nust be net. First, all the
texture coordi nate generation nodes of all the texture coordi nates
(S, T, R and Q of the texture unit must be set to EMBOSS MAP_NV.
Second, all the texture coordi nate generati on nodes of the texture
unit nust be enabled. Third, the EMBOSS LI GHT_NV paraneters of
coordinates S and T nust be identical and the |ight and |ighting
nmust be enabled. [If these conditions are not net, the values of
all coordinates in the texture unit with the EMBOSS MAP_NV node
are undefined."

The | ast paragraph's first sentence shoul d be changed to:
"The state required for texture coordi nate generation conprises
a five-valued integer for each coordinate indicating coordi nate
generation node, and a bit for each coordinate to indicate whether
texture coordi nate generation is enabled or disabled. |In addition
four coefficients are required for the four coordinates for each
of EYE LI NEAR and OBJECT LI NEAR, al so, an enboss constant and
enboss light are required for each of the four coordinates...
The initial values for enboss constants and enboss lights are 1.0
and LI GHTO respectively."

Additions to Chapter 3 of the 1.2 Specification (Rasterization)
None

Additions to Chapter 4 of the 1.2 Specification (Per-Fragnment Operations
and the Frame Buffer)

None
Additions to Chapter 5 of the 1.2 Specification (Special Functions)
None
Additions to Chapter 6 of the 1.2 Specification (State and State Requests)
None
Additions to the GX Specification
None
Errors
I NVALID ENUM i s generated when TexGen is called with a <pnanme>

of TEXTURE_CGEN MODE, a <parant val ue or val ue of what <parans>
points to of EMBOSS MAP_NV, and the active texture unit is even.

170

NVIDIA OpenGL Extension Specifications

NV_texgen_emboss

I NVALI D ENUM i s generated when TexGen is called with a <pnanme>
of EMBOSS CONSTANT NV and the active texture unit is even.

I NVALID ENUM i s generated when TexGen is called with a <pnanme>
of EMBOSS LI GHT_NV and the active texture unit is even.

I NVALI D ENUM i s generated when TexGen is called with a <coord>
of R or Q when <pnane> indi cates EMBOSS CONSTANT_NV.

I NVALID ENUM i s generated when TexGen is called with a <coord>
of R or Q when <pnane> indi cates EMBOSS LI GHT_NV.

I NVALID ENUM i s generated when TexGen is called with a <pnanme>
of EMBOSS LI GHT_NV and the value of i for the parameter LIGHTI is

negative or is greater than or equal

New St at e

to the value of MAX LI GHTS.

(table 6.14, p204) change the entry for TEXTURE _GEN MODE t o:

Get Val ue Type Get Command

TEXTURE_CGEN_MODE 4xZ5 Get TexGeni v

EMBOSS_CONSTANT_NV 4xR Get TexGenf v

EMBOSS LI GHT_NV 4x7Z8* Get TexGeni v

VWhen ARB nmultitexture i s supported,

Initial Value

EYE_LI NEAR

1.0

LI GHTO

Descri ption Sec Attribute

Function used for 2.10.4 texture
texgen (for s,t,r,

and q)

Scal i ng const ant 2.10.4 texture
for enmboss texgen

Li ght used for 2.10.4 texture
enbossi ng.

the Type colum is per-texture unit.

(the TEXTURE_GEN _MODE type changes from 4xZ3 to 4xZ5)

New | npl ement ati on State

None

171

‘Arejaudold VIAIAN

Copyright NVIDIA Corporation, 1999.

NVIDIA Proprietary.

NV_texgen_reflection

NV_t exgen_refl ection
Nane Strings

GL_NV_texgen_reflection
Not i ce

Copyri ght NvI DI A Corporation,
NVI DI A Proprietary.

Ver si on

August 24, 1999
Nurnber

179

Dependenci es

1999.

NVIDIA OpenGL Extension Specifications

Witten based on the wording of the Open@ 1.2 specification but

not dependent on it.

Overvi ew

Thi s extension provides two new texture coordinate generation nodes

that are useful

texture-based |ighting and environnment

mappi ng.

The refl ection map node generates texture coordi nates (s,t,r)

mat ching the vertex's eye-space reflection vector
mappi ng Wi thout the singularity
map node generates texture

map node is useful for
i nherent in sphere mapping.

envi ronnent

The nor nal

The refl ection

coordi nates (s,t,r) matching the vertex's transformed eye-space

normal . The normal

| ssues

Shoul d we place the normal /refl ection vector
(s,t,q) coordinates?

coordi nat es or

RESOLUTI ON: (s, t,r).

the third component, the API

map node is useful
texturing-based diffuse |ighting nodels.

Even if the proposed hardware uses

for sophisticated cube map

inthe (s,t,r) texture

q" for

shoul d claimto support generation of

(s,t,r) and let the texture matri x (through a concatenation wth

the user-supplied texture matrix) nove

r'into "q".

Shoul d you be able to have sonme texture coordi nates conputing

REFLECTI ON_MAP_NV and ot hers not?

RESOLUTI ON:
not cl ear

Shoul d sonet hi ng speci al

texture coordinate for this spec?

172

be usef ul

Sanme question with NORVAL_MAP_NV.

YES. This is the way that SPHERE MAP works. It is
that this would ever

t hough.

be said about the handling of the g

NVIDIA OpenGL Extension Specifications NV_texgen_reflection

RESOLUTION: NO But the foll owi ng paragraph is useful for
i npl enent ors concerned about the handling of g.

The REFLECTI ON_MAP_NV and NORMAL_MAP_NV npdes are intended to supply
reflection and normal vectors for cube map texturing hardware.

VWen these nodes are used for cube map texturing, the generated
texture coordi nates can be thought of as an reflection vector

The value of the g texture coordinate then sinply scales the

vector but does not change its direction. Because only the vector
direction (not the vector magnitude) matters for cube map texturing,
i npl enentations are free to | eave q undefi ned when any of the s,

t, or r texture coordi nates are generated usi ng REFLECTI ON_MAP_NV

or NORMAL_NMAP_NV.

New Procedures and Functi ons
None
New Tokens

Accepted by the <parant paraneters of TexGend, TexGenf, and TexGeni
when <pnanme> paraneter i s TEXTURE GEN_ MODE:

NORMAL_MAP_NV 0x8511
REFLECTI ON_MAP_NV 0x8512

VWen the <pnane> paraneter of TexCGendv, TexGenfv, and TexCeniv is
TEXTURE_GEN _MODE, then the array <paranms> may al so contain
NORMAL_MAP_NV or REFLECTI ON_MAP_NV.

Additions to Chapter 2 of the 1.2 Specification (OpenG. Qperation)
-- Section 2.10.4 "CGenerating Texture Coordi nates"
Change the last sentence in the 1st paragraph to:

"I'f <pnanme> is TEXTURE_GEN _MODE, then either <paranms> points to
or <paranm® is an integer that is one of the synbolic constants
OBJECT_LI NEAR, EYE LI NEAR, SPHERE MAP, REFLECTI ON_MAP_NV, or
NORMAL_VAP_NV. "

Add these paragraphs after the 4th paragraph

"I f TEXTURE_GEN_MODE i ndi cates REFLECTI ON_MAP_NV, conpute the
reflection vector r as described for the SPHERE MAP node. Then the
val ue assigned to an s coordinate (the first TexGen argunent val ue
isS) iss =rx; the value assigned to at coordinate is t = ry;
and the value assigned to ar coordinate is r =rz. Calling TexGen
with a <coord> of Q when <pnane> indi cates REFLECTI ON_MAP_NV
generates the error | NVALI D_ENUM

| f TEXTURE_GEN _MODE i ndi cates NORVAL_MAP_NV, conpute the nornal
vector n' as described in section 2.10.3. Then the val ue assi gned
to an s coordinate (the first TexGen argunment value is S) is s =
nfx; the value assigned to at coordinate is t = nfy; and the

val ue assigned to a r coordinate is r = nfz. (The values nfx, nfy,

173

‘Arejanidoid VIAIAN

Copyright NVIDIA Corporation, 1999.

NVIDIA Proprietary.

NV_texgen_reflection

NVIDIA OpenGL Extension Specifications

and nfz are the components of nf.) Calling TexGen with a <coord>
of Q when <pnane> indi cates REFLECTI ON_MAP_NV generates the error

I NVALI D_ENUM

The | ast paragraph's first sentence shoul d be changed to:

"The state required for
five-val ued integer for
gener ati on node, "

Additions to Chapter 3 of the
None

Additions to Chapter 4 of the
and the Franme Buffer)

None

Additions to Chapter 5 of the
None

Additions to Chapter 6 of the

None

texture coordi nate generation conprises a
each coordinate indicating coordi nate

1.2 Specification (Rasterization)

1.2 Specification (Per-Fragnment Qperations

1.2 Specification (Special Functions)

1.2 Specification (State and State Requests)

Additions to the GX Specification

None

Errors

I NVALI D ENUM i s generated when TexGen is called with a <coord> of Q
when <pname> indi cat es REFLECTI ON_MAP_NV or NORVAL_NAP_NV.

New St at e

(table 6.14, p204) change the entry for TEXTURE_GEN_MODE t o:

Get Val ue Type Get Command Initial Value Description Sec Attribute

TEXTURE_GEN_MODE 4xZ5 Get TexGeni v EYE_LI NEAR Function used for 2.10.4 texture

texgen (for s,t,r,
and q)

(the type changes from 4xZ3 to 4xZ5)

New | npl ement ati on State

None

174

NVIDIA OpenGL Extension Specifications NV_texture_env_combine4

Name
NV_texture_env_conbi ne4
Nane Strings
GL_NV_texture_env_conbi ned
Not i ce

Copyri ght NvI DI A Corporation, 1999.
NVI DI A Proprietary.

Ver si on

$Dat e: 1999/06/21 13:54:17 $ $Revision: 1.2 $
Nurnber

27?2
Dependenci es

EXT_texture_env_conbine is required and is nodified by this extension
ARB nultitexture affects the definition of this extension

Overvi ew

New texture environment function COVBI NE4_NV al | ows programmabl e
texture conbi ner operations, including

ADD Arg0 * Argl + Arg2 * Arg3
ADD_S| GNED_EXT Arg0 * Argl + Arg2 * Arg3 - 0.5

where Arg0, Argl, Arg2 and Arg3 are derived from

ZERO the value 0

PRI MARY_CCOLOR_EXT primary color of incom ng fragment

TEXTURE texture col or of corresponding texture unit

CONSTANT _EXT texture environment constant col or

PREVI QUS_EXT result of previous texture environnment; on
texture unit 0, this maps to PRI MARY_COLOR_EXT

TEXTURE<n>_ARB texture color of the <n>th texture unit

In addition, the result may be scaled by 1.0, 2.0 or 4.0.
| ssues

None
New Procedures and Functions

None

175

‘Arejaudold VIAIAN

Copyright NVIDIA Corporation, 1999.

NVIDIA Proprietary.

NV_texture_env_combine4

New

Addi

Addi

Tokens

Accepted by the <parans> paraneter of TexEnvf, TexEnvi, TexEnvfv, and
TexEnvi v when t he <pnane> paraneter value is TEXTURE_ENV_MODE

COVBI NE4_NV 0x8503
Accepted by the <pnane> paraneter of GetTexEnvfv, GetTexEnviv,

TexEnvf, TexEnvi, TexEnvfv, and TexEnviv when the <target> paraneter
val ue i s TEXTURE ENV

SOURCE3_RGB_NV 0x8583
SOURCE3_ALPHA_ NV 0x858B
OPERAND3_RGB_NV 0x8593
OPERANDS_ALPHA NV 0x859B

Accepted by the <parans> paraneter of TexEnvf, TexEnvi, TexEnvfv, and
TexEnvi v when t he <pnane> paraneter value is SOURCEO RGB_EXT,
SOURCE1_RGB_EXT, SOURCE2_RGB_EXT, SOURCE3_RGB_NV, SOURCEO_ALPHA EXT,
SOURCE1_ALPHA EXT, SOURCE2_ALPHA EXT, or SOURCE3_ALPHA NV

ZERO
TEXTURE<n>_ARB

where <n> is in the range 0 to NUMBER OF TEXTURE UNI TS ARB-1.

Accepted by the <parans> paraneter of TexEnvf, TexEnvi, TexEnvfv, and
TexEnvi v when t he <pnanme> paraneter value i s OPERANDO_RGB EXT,
OPERANDL_RGB_EXT, OPERAND2_RGB_EXT or OPERAND3_RGB_NV

SRC_COLOR
ONE_M NUS_SRC_COLOR
SRC_ALPHA

ONE_M NUS_SRC_ALPHA

Accepted by the <parans> paraneter of TexEnvf, TexEnvi, TexEnvfv, and
TexEnvi v when t he <pnane> paraneter val ue is OPERANDO_ALPHA EXT,
OPERANDL_ALPHA EXT, OPERAND2_ALPHA EXT, or OPERAND3_ALPHA NV

SRC_ALPHA
ONE_M NUS_SRC_ALPHA

tions to Chapter 2 of the GL Specification (OpenG Qperation)
None
tions to Chapter 3 of the GL Specification (Rasterization)

Added to subsection 3.8.9, before the paragraph describing the state
requi renents:

If the value of TEXTURE ENV_MODE is COVBI NE4 NV, the form of the
texture function depends on the val ues of COVBI NE_RGB EXT and

COMBI NE_ALPHA EXT, according to table 3.21. The RGB and ALPHA results
of the texture function are then nultiplied by the val ues of
RGB_SCALE EXT and ALPHA SCALE, respectively. The results are clanped
to [0,1]. |If the value of COVBI NE_ RGB _EXT or COWVBI NE_ALPHA EXT is not

176

NVIDIA OpenGL Extension Specifications

NVIDIA OpenGL Extension Specifications

one of the listed values, the result is undefined.

COVBI NE_RGB_EXT or

COVBI NE_ALPHA EXT Texture Function
ADD Arg0 * Argl + Arg2 * Arg3
ADD_SI GNED_EXT Arg0 * Argl + Arg2 * Arg3 - 0.5

Tabl e 3.21: COVBINE4_NV texture functions

The argunents Arg0, Argl, Arg2 and Arg3 are determ ned by the val ues
of SOURCE<n>_RGB_EXT, SOURCE<n>_ALPHA EXT, OPERAND<n>_RGB_EXT and
OPERAND<n>_ALPHA EXT. In the following two tables, & and At are the
filtered texture RGB and al pha values; Cc and Ac are the texture

envi ronnent RGB and al pha values; Cf and Af are the RGB and al pha of
the primary color of the incomng fragnent; and Cp and Ap are the RGB
and al pha values resulting fromthe previous texture environment. On
texture environment 0, Cp and Ap are identical to Cf and Af,
respectively. Ct<n> and At<n> are the filtered texture RG and al pha
val ues fromthe texture bound to the <n>th texture unit. |If the <n>th
texture unit is disabled, the value of each component is 1. The
relationship is described in tables 3.22 and 3. 23.

SOURCE<n>_ RGB_EXT OPERAND<n>_ RGB_EXT Ar gunent
ZERO SRC_COLOR 0

ONE_M NUS_SRC_COLOR 1

SRC_ALPHA 0

ONE_M NUS_SRC_ALPHA 1
TEXTURE SRC_COLOR o

ONE_M NUS_SRC_COLOR (1-Ct)

SRC_ALPHA At

ONE_M NUS_SRC_ALPHA (1-At)
CONSTANT_EXT SRC_COLOR Ce

ONE_M NUS_SRC_COLOR (1- Cc)

SRC_ALPHA Ac

ONE_M NUS_SRC_ALPHA (1- Ac)
PRI MARY_COLOR_EXT SRC_COLOR of

ONE_M NUS_SRC_COLOR (1-Cf)

SRC_ALPHA Af

ONE_M NUS_SRC_ALPHA (1- AF)
PREVI OUS_EXT SRC_COLOR Cp

ONE_M NUS_SRC_COLOR (1- Cp)

SRC_ALPHA Ap

ONE_M NUS_SRC_ALPHA (1- Ap)
TEXTURE<n>_ARB SRC_COLOR a <n>

ONE_M NUS_SRC_COLOR (1- Ct <n>)

SRC_ALPHA At <n>

ONE_M NUS_SRC_ALPHA (1- At <n>)

Tabl e 3.22: Argunents for COVBI NE_RGB _EXT functions

177

NV_texture_env_combine4

‘Arejanidoid VIAIAN

Copyright NVIDIA Corporation, 1999.

NVIDIA Proprietary.

NV_texture_env_combine4

NVIDIA OpenGL Extension Specifications

SOURCE<n>_ALPHA_EXT OPERAND<n> ALPHA EXT Argument
ZERO SRC_ALPHA 0
ONE_M NUS_SRC_ALPHA 1
TEXTURE SRC_ALPHA At
ONE_M NUS_SRC_ALPHA (1-At)
CONSTANT_EXT SRC_ALPHA Ac
ONE_M NUS_SRC_ALPHA (1- Ac)
PRI MARY_COLOR_EXT SRC_ALPHA Af
ONE_M NUS_SRC ALPHA (1- Af)
PREVI OUS_EXT SRC_ALPHA Ap
ONE_M NUS_SRC_ALPHA (1- Ap)
TEXTURE<n>_ARB SRC_ALPHA At <n>
ONE_M NUS_SRC_ALPHA (1- At <n>)

Tabl e 3.23: Argunents for COVBI NE_ALPHA EXT functi ons

Additions to Chapter 4 of the G Specification (Per-Fragment Qperations
and the Franebuffer)

None

Additions to Chapter 5 of the G Specification (Special Functions)
None

Additions to Chapter 6 of the GL Specification (State and State Requests)
None

Additions to the GX Specification
None

G_X Prot ocol
None

Errors
I NVALID ENUM i s generated if <parans> val ue for SOURCEO_RGB_EXT,
SOURCE1_RGB_EXT, SOURCE2_RGB EXT, SOURCE3_RGB NV, SOURCEO_ALPHA EXT,
SOURCE1_ALPHA EXT, SOQURCE2_ALPHA EXT or SOURCE3_ALPHA NV is not one of
ZERO, TEXTURE, CONSTANT_EXT, PRI MARY_COLOR_EXT, PREVI QUS_EXT or
TEXTURE<n>_ARB, where <n>is in the range 0 to
NUVBER _OF TEXTURE UNI TS_ARB- 1.
I NVALID ENUM i s generated if <parans> val ue for OPERANDO_ RGB EXT,
OPERAND1_RGB_EXT, OPERAND2_RGB _EXT or OPERAND3_RGB NV is not one of
SRC_COLOR, ONE_M NUS_SRC COLOR, SRC ALPHA or ONE_M NUS_SRC _ALPHA.
I NVALID ENUM i s generated if <parans> val ue for OPERANDO_ALPHA EXT

OPERANDL_ALPHA EXT, OPERAND2_ALPHA EXT, or OPERAND3_ALPHA NV is not
one of SRC ALPHA or ONE_M NUS SRC ALPHA.

178

NVIDIA OpenGL Extension Specifications NV_texture_env_combine4

Modi fications to EXT texture _env_comnbi ne

Thi s extension relaxes the restrictions on SOURCE<n> RGB EXT,
SQURCE<n>_ALPHA EXT, OPERAND<n>_ RGB EXT and OPERAND<n>_ALPHA EXT for
use with EXT_texture_env_conbine. Al parans specified by Table 3.22
and Table 3.23 are valid.

Dependenci es on ARB nultitexture

If ARB nmultitexture is not inplenented, all references to
TEXTURE<n>_ARB and NUMBER_COF_TEXTURE_UNI TS_ARB are del et ed.

New St at e
Get Val ue Get Command Type Initial Value Attribute
SOURCE3_RGB_NV Cet TexEnvi v n x Z5+n ZERO texture
SOURCE3_ALPHA NV Cet TexEnvi v n x Z5+n ZERO texture
OPERAND3_RGB_NV Get TexEnvi v n x Z2 ONE_M NUS_SRC COLOR texture
OPERAND3_ALPHA NV Get TexEnvi v n x Z2 ONE_M NUS_SRC ALPHA texture

New | npl ement ati on Dependent State

None

179

‘Arejaudold VIAIAN

Copyright NVIDIA Corporation, 1999.

NVIDIA Proprietary.

NV_vertex_array_range

Name
NV_vertex_array_range
Nane Strings
GL_NV_vertex_array_range
Not i ce

Copyri ght NvI DI A Corporation,
NVI DI A Proprietary.

Ver si on
August 19, 1998
Nurnber
?2?
Dependenci es
None

Overvi ew

The goal

1999.

NVIDIA OpenGL Extension Specifications

of this extension is to permt extremely high vertex

processing rates via QpenG vertex arrays even when the CPU | acks

t he necessary data novenent

at which the vertex engi ne can consune vertices.
pass vertex indices to the hardware and
vertex data via Direct
the current Qpen@ 1.1 vertex array
functionality has semantic constraints that
the vertex array range extension

up if they can just

et the hardware "pull" the actua

Access (DMA). Unfortunately,

hard. Hence,

bandwi dth to keep up with the rate

CPUs can keep
Menor y

make such an approach

Thi s extension provides a mechanismfor deferring the pulling of
vertex array elenents to facilitate DMAed pul ling of vertices for

f ast,

efficient vertex array transfers.
pass vertex indices to the hardware which can DVA the actua

The OpenGL client

need only
i ndex's

vertex data directly out of the client address space.

The OpenG. 1.1 vertex array functionality specifies a fairly strict

coherency nodel

for when OpenG extracts vertex data froma vertex

array and when the application can update the in nmenory

vertex array data.

The OpenG. 1.1 specification says "Changes

made to array data between the execution of Begin and the
correspondi ng execution of End may affect calls to ArrayEl enent
that are nmade within the sane Begi n/ End period in non-sequenti al

ways. That is, a cal

Thi s neans t hat

to ArrayEl enent that
array data may access the changed data, and a cal
a change to array data may access the origina

180

precedes a change to
that follows
data."

by the time End returns (and DrawArrays and
DrawEl enents return since they have inplicit

Ends), the actual vertex

NVIDIA OpenGL Extension Specifications NV_vertex_array_range

array data nmust be transferred to Qpen@. This strict coherency nodel
prevents us fromsinply passing vertex elenment indices to the hardware
and having the hardware "pull" the vertex data out (which is often

long after the End for the primtive has returned to the application).

Rel axi ng thi s coherency nodel and boundi ng the range from which
vertex array data can be pulled is key to maki ng OpenG vertex
array transfers faster and nore efficient.

The first task of the vertex array range extension is to rel ax

t he coherency nodel so that hardware can indeed "pull" vertex

data fromthe Open@ client's address space |long after the application
has conpl eted sending the geonmetry primtives requiring the vertex

dat a.

The second problemw th the Qpen@ 1.1 vertex array functionality is
the I ack of any guidance fromthe APl about what region of nmenory
vertices can be pulled from There is no size limt for Open@E 1.1
vertex arrays. Any vertex index that points to valid data in al
enabl ed arrays is fair gane. This nakes it hard for a vertex DVA
engine to pull vertices since they can be potentially pulled from
anywhere in the Open@ client address space.

The vertex array range extension specifies a range of the OpenG
client's address space where vertices can be pulled. Vertex indices
that access any array el enments outside the vertex array range

are specified to be undefined. This permts hardware to DVA from
finite regions of OpenG client address space, nmaki ng DMA engi ne

i npl enent ati on tractable.

The extension is specified such that an (error free) OpenG client
using the vertex array range functionality could no-op its vertex
array range commands and operate equivalently to using (if slower
than) the vertex array range functionality.

Because different nenory types (local graphics nenory, AGP nenory)
have different DMA bandw dt hs and cachi ng behavi or, this extension
i ncl udes a wi ndow system dependent nenory allocator to allocate
cleanly the nost appropriate nmenory for constructing a vertex array
range. The nenory allocator provided allows the application to
tradeoff the desired CPU read frequency, CPU wite frequency, and
menory priority while still leaving it up to Qpen@& inplenentation
t he exact nmenory type to be all ocated.

| ssues

How does this extension interact with the conpiled_vertex_array
ext ensi on?

I think they should be independent and not interfere with
each other. In practice, if you use NV_vertex_array_range,
you can surpass the performance of conpiled_vertex_array

Shoul d sone expl anation be added about what happens when an QpenGL

application updates its address space in regions overlapping with
the currently configured vertex array range?

181

‘Arejanidoid VIAIAN

Copyright NVIDIA Corporation, 1999.

NVIDIA Proprietary.

NV_vertex_array_range NVIDIA OpenGL Extension Specifications

RESOLUTION: | think the right thing is to say that you get
non-sequential results. |In practice, you'll be using an old
context DMA pointing to the old pages.

If the application change's its address space within the
vertex array range, the application should call

gl Vert exArrayRangeNV again. That will re-make a new vertex
array range context DMA for the application's current address
space.

If we are falling back to software transformation, do we still need to
abi de by | eaving "undefined" vertices outside the vertex array range?
For exanple, pointers that are not 32-bit aligned would |ikely cause
a fall back.

RESCLUTION: No. The fact that vertex is "undefined" neans we
can do anything we want (as long as we send a vertex and do not

crash) so it is perfectly fine for the software puller to
grab vertex information not available to the hardware puller.

Shoul d we give a programrer a sense of how big a vertex array
range they can specify?

RESCOLUTI ON: No. Just docunent it if there are limtations.
Probably very hardware and operating system dependent.

Is it clear enough that |anguage about ArrayEl enent
al so applies to DrawArrays and Drawkl enent s?

Maybe not, but Open@G 1.1 spec is clear that DrawArrays and
DrawEl enents are defined in terns of ArrayEl ement.

Shoul d gl Fl ush be the sane as gl VertexArrayRangeFl ush?

RESOLUTION: No. A gl Flush is cheaper than a gl VertexArrayRangeFl ush
t hough a gl Vert exArrayRangeFl ushNV should do a fl ush.

If any the data for any enabled array for a given array el ement index
falls outside of the vertex array range, what happens?

RESOLUTI ON: An undefined vertex is generated.
VWhat error is generated in this case?

| don't know yet. W should nake sure the hardware really does
| et us know when vertices are undefi ned.

Note that this is alittle weird for QpenG since nost errors
in Qpen@ result in the conmand being ignored. Not in this
case though.

Shoul d this extension support an interface for allocating video
and AGP nenory?

RESOLUTI ON: YES. It seens |like we should be able to | eave

the task of menory allocation to DirectDraw, but DirectDraw s
asynchronous unmappi ng behavi or and having to hold | ocks to

182

NVIDIA OpenGL Extension Specifications NV_vertex_array_range

update DirectDraw surfaces nmakes that mechanismto cunbersone.
Plus the APl is a lot easier if we do it ourselves.

How do we deci de what type of nmenory to allocate for the application?
RESOLUTI ON: Usage hints. The application rates the read
frequency (how often will they read the nenory), the wite
frequency (how often will they wite the nmenory), and the
priority (how inportant is this nmenory relative to other
uses for the nmenory such as texturing) on a scale of 1.0
to 0.0. Using these hints and the size of the nenory requsted,
the OpenG inplenentation deci des where to allocate the nenory.
W try to not directly expose particular types of nenory
(AGP, local nenory, cached/uncached, etc) so future nenory
types can be supported by nmerely updating the QpenGL
i mpl enent ati on.

Shoul d the nmenory allocator functionality be available be a part
of the G. or w ndow system dependent (G.X or WE) APIs?

RESOLUTI ON: The wi ndow syst em dependent API .
The menory all ocator should be considered a w ndow systeni
operating system dependent operation. This also permts
menory to be allocated when no QpenG rendering contexts
exi st yet.

New Procedures and Functions

voi d VertexArrayRangeNV(sizei |ength, void *pointer)
voi d Fl ushVert exArrayRangeNV(voi d)

New Tokens

Accepted by the <cap> paraneter of EnableCientState,
Di sabl eCientState, and |sEnabl ed:

VERTEX_ARRAY RANGE_NV 0x851d

Accepted by the <pnanme> paraneter of GetBool eanv, Getlntegerv,
Get Fl oat v, and Get Doubl ev:

VERTEX_ARRAY_RANGE_LENGTH_NV 0x851e
VERTEX_ARRAY_RANGE_VALI D_NV 0x851f
MAX_VERTEX_ARRAY_RANGE_ELEMENT_NV 0x8520
Accepted by the <pnanme> paraneter of GetPointerv:
VERTEX_ARRAY_RANGE_PO NTER_NV 0x8521
Additions to Chapter 2 of the 1.1 Specification (OpenG. Qperation)

After the discussion of vertex arrays (Section 2.8) add a
description of the vertex array range:

183

‘Arejanidoid VIAIAN

Copyright NVIDIA Corporation, 1999.

NVIDIA Proprietary.

NV_vertex_array_range

"The command
voi d VertexArrayRangeNV(sizei |ength, void *pointer)

specifies the current vertex array range. Wen the vertex array
range i s enabled and valid, vertex array vertex transfers fromwthin
the vertex array range are potentially faster. The vertex array
range is a contiguous region of (virtual) address space for placing
vertex arrays. The "pointer" paraneter is a pointer to the base of
the vertex array range. The "length" pointer is the length of the
vertex array range in basic machine units (typically unsigned bytes).

The vertex array range address space region extends from "pointer"
to "pointer + length - 1" inclusive. Wen specified and enabl ed,
vertex array vertex transfers fromwithin the vertex array range
are potentially faster.

There is sone system burden associated with establishing a vertex
array range (typically, the nmenory range nust be | ocked down).

If either the vertex array range pointer or size is set to zero,

the previously established vertex array range is rel eased (typically,
unl ocki ng the nenory).

The vertex array range may not be established for operating system
dependent reasons, and therefore, not valid. Reasons that a vertex
array range cannot be established include spanning different nenory
types, the nenory could not be | ocked down, alignment restrictions

are not net, etc.

The vertex array range is enabled or disabled by calling
EnableCientState or DisabledientState with the synbolic
const ant VERTEX ARRAY_ RANGE_NV.

The vertex array range is either valid or invalid and this state can
be determ ned by queryi ng VERTEX ARRAY_RANGE VALI D NV. The vertex
array range is valid when the followi ng conditions are net:

0 VERTEX ARRAY RANGE NV is enabl ed.

0 VERTEX ARRAY is enabl ed.

o VertexArrayRangeNV has been called with a non-null pointer and
non-zero size

o The vertex array range has been establi shed.

0 An inplenentation-dependent validity check based on the
poi nter alignnment, size, and underlying nmenory type of the
vertex array range regi on of nenory.

o An inplenentation-dependent validity check based on
the current vertex array state including the strides, sizes,
types, and pointer alignnents (but not pointer value) for
currently enabl ed vertex arrays.

o Oher inplenentation-dependent validaity checks based on
ot her Open@&. rendering state.

184

NVIDIA OpenGL Extension Specifications

NVIDIA OpenGL Extension Specifications NV_vertex_array_range

O herwi se, the vertex array range is not valid. |If the vertex array
range is not valid, vertex array transfers will not be faster

VWhen the vertex array range is valid, ArrayEl ement conmands may
generate undefined vertices if and only if any indexed el enents of
the enabl ed arrays are not within the vertex array range or if the

i ndex is negative or greater or equal to the inplenentation-dependent
val ue of MAX VERTEX ARRAY RANGE ELEMENT NV. |f an undefined vertex
is generated, an | NVALI D OPERATION error may or may not be gener ated.

The vertex array cohenecy nodel specifies when vertex data must be
be extracted fromthe vertex array nenory. \Wen the vertex array
range is not valid, (quoting the specification) "Changes nmade to
array data between the execution of Begin and the correspondi ng
execution of End may effect calls to ArrayEl enent that are nade

wi thin the sane Begin/End period in non-sequential ways. That is,
a call to ArrayEl ement that precedes a change to array data may
access the changed data, and a call that follows a change to array
data may access the original data.’

VWhen the vertex array range is valid, the vertex array coherency
nodel is relaxed so that changes nmade to array data until the next
"vertex array range flush" may affects calls to ArrayEl enent in
non-sequential ways. That is a call to ArrayEl enent that precedes

a change to array data (w thout an intervening "vertex array range
flush") may access the changed data, and a call that follows a change
(without an intervening "vertex array range flush") to array data

may access original data.

A 'vertex array range flush' occurs when one of the foll ow ng
operations occur:

o Finish returns.

o FlushVertexArrayRangeNV ret urns.

0 \VertexArrayRangeNV returns.

o CdientStateD sabl e of VERTEX ARRAY RANGE NV returns

o CdientStateEnabl e of VETEX ARRAY RANGE NV returns.

0 Another OpenG. context is made current.
The client state required to inplenment the vertex array range
consi sts of an enable bit, a nmenory pointer, an integer size,
and a valid bit.
If the menmory mappi ng of pages within the vertex array range changes,
using the vertex array range may or may not result in undefined data
being fetched fromthe vertex arrays when the vertex array range is
enabl ed and valid. To ensure that the vertex array range reflects
t he address space's current state, the application is responsible

for calling VertexArrayRange again after any nenory mappi ng changes
within the vertex array range."llo

185

‘Aelaudolid vIAQIAN

Copyright NVIDIA Corporation, 1999.

NVIDIA Proprietary.

NV_vertex_array_range NVIDIA OpenGL Extension Specifications

Addi

Addi

tions to Chapter 5 of the 1.1 Specification (Special Functions)
Add to the end of Section 5.4 "Display Lists"

"Vert exArrayRangeNV and Fl ushVertexArrayRangeNV are not conplied
into display lists but are executed i nmmedi ately.

If a display list is conmpiled while VERTEX ARRAY RANGE NV is
enabl ed, the commands ArrayEl enent, DrawArrays, DrawEl enents,
and DrawRangeEl enents are accunul ated into a display list as
i f VERTEX_ARRAY_RANGE NV is disabled."

tions to the WAL i nterface:

"When establishing a vertex array range, certain types of nmenory
may be nore efficient than other types of menory. The conmands

void *wgl Al | ocat eMenor yNV(si zei size
fl oat readFrequency,
float witeFrequency,
float priority)

voi d wgl FreeMenor yNV(voi d *poi nter)

all ocate and free menory that nmay be nore suitable for establishing
an efficient vertex array range than nmenory allocated by ot her neans.
The wgl Al | ocat eMenor yNV command al | ocat es <size> bytes of contiguous
nenory.

The <readFrequency>, <writeFrequency>, and <priority> paraneters are
usage hints that the QpenG inplenentation can use to determ ne the
best type of nenory to allocate. These paraneters range fromO0.0

to 1.0. A <readFrequency> of 1.0 indicates that the application
intends to frequently read the allocated nenory; a <readFrequency>
of 0.0 indicates that the application will rarely or never read the
menory. A <witeFrequency> of 1.0 indicates that the application
intends to frequently wite the allocated nenory; a <witeFrequency>
of 0.0 indicates that the application will rarely wite the nmenory.
A <priority> paraneter of 1.0 indicates that nmenory type should be
the nost efficient available nenory, even at the expense of (for
exanpl e) avail able texture nenory; a <priority> of 0.0 indicates that
the vertex array range does not require an efficient nenory type
(for exanmple, so that nore efficient menory is available for other
pur poses such as texture nenory).

The OpenGL inplenentation is free to use the <size> <readFrequency>,
<writeFrequency> and <priority> paraneters to determ ne what nenory
type should be allocated. The nenory types avail abl e and how t he
menory type is determned is inplenmentati on dependent (and the

i npl enentation is free to ignore any or all of the above paraneters).

Possi bl e menory types that could be allocated are uncached nenory,
write-conbined menory, graphics hardware nmenory, etc. The intent
of the wgl Al l ocat eMenoryNV command is to permt the allocation of
menory for efficient vertex array range usage. However, there is
no requirenent that nenory all ocated by wgl Al |l ocat eMenor yNV nmust be
used to allocate nmenory for vertex array ranges.

186

NVIDIA OpenGL Extension Specifications NV_vertex_array_range

If the menory cannot be allocated, a NULL pointer is returned (and
no QpenG error is generated). An inplenmentation that does not
support this extension's nmenory allocation interface is free to
never allocate nenory (always return NULL).

The wgl FreeMenor yNV conmand frees nmenory allocated with

wgl Al | ocat eMenoryNV. The <poi nter> shoul d be a pointer returned by
wgl Al | ocat eMenoryNV and not previously freed. If a pointer is passed
to wgl FreeMenoryNV that was not allocated via wgl Al | ocat eMenor yNV

or was previously freed (w thout being reallocated), the free is
ignored with no error reported.

The menory all ocated by wgl Al | ocat eMenoryNV shoul d be avail able to
all other threads in the address space where the nmenory is allocated
(the nenory is not private to a single thread). Any thread in the
address space (not sinply the thread that all ocated the nenory)

may use wgl FreeMenoryNV to free nmenory allocated by itself or any

ot her thread.

Because wgl Al | ocat eMenor yNV and wgl FreeMenoryNV are not OpenG
renderi ng commands, these conmands do not require a current context.
They operate normally even if called within a Begin/End or while
conpiling a display list."

Additions to the GX Specification
Sanme | anguage as the "Additions to the WG Specification” section
except all references to wgl Al l ocat eMenoryNV and wgl Fr eeMenor yNV
shoul d be replaced with gl XAl | ocat eMenor yNV and gl XFr eeMenor yNV
respectively.
Addi ti onal | anguage:
"Open@G. inplementations using GX indirect rendering should fail
to set up the vertex array range (failing to set the vertex array
valid bit so the vertex array range functionality is not usable).
Addi tional ly, gl XAl |l ocateMenoryNV al ways fails to allocate nmenory
(returns NULL) when used with an indirect rendering context."

GLX Protocol
None

Errors

I NVALI D_OPERATION i s generated if VertexArrayRange or
Fl ushVert exArrayRange is call ed between the execution of Begin
and the correspondi ng execution of End.

| NVALI D_OPERATI ON may be generated if an undefined vertex is
gener at ed.

187

‘Arejanidold vIAQIAN

'666T ‘uonelodiod vIAIAN ybBuAdod

NV_vertex_array_range NVIDIA OpenGL Extension Specifications

New St at e
Initial
Get Val ue Get Command Type Val ue
VERTEX_ARRAY_ RANGE NV | sEnabl ed B Fal se
VERTEX_ARRAY_RANGE_PO NTER_NV Cet Poi nterv Z+ 0
VERTEX_ARRAY_RANGE_LENGTH_NV Get I ntegerv Z+ 0
VERTEX _ARRAY RANGE VALI D NV Cet Bool eanv B Fal se
New | npl ement ati on Dependent State
Get Val ue Get Command Type M ni num Val ue

MAX_VERTEX_ARRAY _RANGE ELEMENT_NV Getlntegerv Z+ 65535
NV10 | npl enentation Details
This section describes inplenentation-defined limts for NV10:
The val ue of MAX_ VERTEX_ARRAY RANGE ELEMENT NV is 65535.

This section describes bugs in the NV10 vertex array range. These
bugs will be fixed in a future hardware rel ease:

If VERTEX ARRAY is enabled with a format of G._SHORT and the
vertex array range is valid, a vertex array vertex with an X
Y, Z, or Wcoordinate of -32768 is wongly interpreted as zero.
Exanpl e: the X, Y coordinate (-32768,-32768) is incorrectly read
as (0,0) fromthe vertex array.

I f TEXTURE_COCORD _ARRAY is enabled with a format of G._SHORT

and the vertex array range is valid, a vertex array texture
coord with an S, T, R or Q coordinate of -32768 is wongly
interpreted as zero. Exanple: the S, T coordinate (-32768,-32768)
is incorrectly read as (0,0) fromthe texture coord array.

This section describes the inplenentation-dependent validity
checks for Nv10.

o For the NV10 inpl enentation-dependent validity check for the
vertex array range region of nenory to be true, all of the
foll owi ng nust be true:

1. The <pointer> nust be 32-byte aligned.

Copyright NVIDIA Corporation, 1999.
NVIDIA Proprietary.

2. The underlying nmenory types nust all be the sane (all
standard system nenory -OR- all AGP nenory -OR- all video
nmenory) .

188

Attrib

vertex-array
vertex-array
vertex-array
vertex-array

NVIDIA OpenGL Extension Specifications NV_vertex_array_range

o For the NV10 inpl enentation-dependent validity check for the
vertex array state to be true, all of the follow ng nust be
true:

1. (VERTEX_ARRAY nust be enabl ed - AND-
The vertex array stride nust be |less than 256 - AND-
((The vertex array type nust be FLOAT - AND-
The vertex array stride nust be a nultiple of 4 bytes - AND
The vertex array pointer nust be 4-byte aligned - AND-
The vertex array size nust be 2, 3, or 4) -OR-
(The vertex array type nust be SHORT - AND-
The vertex array stride nust be a nultiple of 4 bytes - AND
The vertex array pointer nust be 4-byte aligned. -AND
The vertex array size nmust be 2) -OR
(The vertex array type nust be SHORT - AND-
The vertex array stride nust be a nultiple of 8 bytes - AND
The vertex array pointer nust be 8-byte aligned. -AND
The vertex array size nmust be 4) -OR
(The vertex array type nust be SHORT - AND-
The vertex array stride nust be a nultiple of 8 bytes - AND
The vertex array pointer nust be 8-byte aligned.)
The vertex array stride nust non-zero - AND-
The vertex array size nust be 3)))

2. (NORMAL_ARRAY nust be disabled.) -OR -
(NORMAL_ARRAY nust be enabl ed - AND-
The normal array size nust be 3 - AND
The normal array stride nust be |less than 256 - AND-
((The normal array type nust be FLOAT - AND-
The normal array stride nust be a nultiple of 4 bytes - AND
The normal array pointer nust be 4-byte aligned.) -OR
(The nornmal array type nust be SHORT - AND-
The normal array stride nust be a nultiple of 8 bytes - AND
The normal array stride nust non-zero - AND-
The nornmal array pointer nust be 8-byte aligned.)))

3. (COLOR_ARRAY nust be disabled.) -OR -
(COLOR_ARRAY nust be enabl ed - AND-
The col or array type nust be FLOAT or UNSI GNED BYTE - AND-
The color array stride nust be a nultiple of 4 bytes - AND
The color array stride nust be | ess than 256 - AND-
The col or array pointer nust be 4-byte aligned - AND
((The color array size nust be 3 -AND
The color array stride nust non-zero) -OR-
(The color array size nmust be 4))

4. (SECONDARY_COLOR_ARRAY nust be disabled.) -OR -
(SECONDARY_COLOR_ARRAY nust be enabl ed - AND-
The secondary color array type nust be FLOAT or UNSI GNED _BYTE - AND-
The secondary color array stride nmust be a nmultiple of 4 bytes - AND
The secondary color array stride nmust be | ess than 256 - AND-
The secondary col or array pointer nust be 4-byte aligned - AND
((The secondary color array size nust be 3 -AND
The secondary color array stride nust non-zero) -OR
(The secondary color array size nust be 4))

189

‘Arejanidold vIAQIAN

'666T ‘uonelodiod VIAIAN WbBLAdoD

Copyright NVIDIA Corporation, 1999.

NVIDIA Proprietary.

NV_vertex_array_range

NVIDIA OpenGL Extension Specifications

5. For texture units zero and one

(TEXTURE_COCORD_ARRAY nust be disabled.) -OR -
(TEXTURE_COORD_ARRAY must be enabl ed - AND-
The texture coord array stride nust be | ess than 256 - AND-

((The texture
The texture
The texture
The texture

(The texture
The texture
The texture
The texture
The texture

(The texture
The texture
The texture
The texture

(The texture
The texture
The texture
The texture
The texture

(The texture
The texture
The texture
The texture

6. (EDGE_FLAG ARRAY

coord array type nust be FLOAT - AND-

coord array pointer nust be 4-byte aligned.)

coord array stride nust be a nultiple of 4 bytes - AND-
coord array size nust be 1, 2, 3, or 4) -OR

coord array type nust be SHORT - AND-

coord array pointer nust be 4-byte aligned.)

coord array stride nust be a nultiple of 4 bytes - AND-
coord array stride nust non-zero - AND

coord array size nust be 1) -OR-

coord array type nust be SHORT - AND-

coord array pointer nust be 4-byte aligned.)

coord array stride nust be a nultiple of 4 bytes - AND-
coord array size nust be 2) -OR-

coord array type nust be SHORT - AND-

coord array pointer nust be 8-byte aligned.)

coord array stride nust be a nultiple of 8 bytes - AND
coord array stride nust non-zero - AND

coord array size nust be 3) -OR-

coord array type nust be SHORT - AND-

coord array pointer nust be 8-byte aligned.)

coord array stride nust be a nultiple of 8 bytes - AND
coord array size nust be 4)))

nmust be di sabled.)

7. (VERTEX_VEI GHT_ARRAY_NV mnust be disabled.) -OR -
(VERTEX_VEI GHT_ARRAY_NV nust be enabl ed. - AND -

The vertex
The vertex
The vertex
The vertex
The vertex

wei ght
wei ght
wei ght
wei ght
wei ght

array type nmust be FLOAT - AND-

array size must be 1 -AND

array stride nust be a nmultiple of 4 bytes -AND
array stride nust be | ess than 256 - AND-

array pointer nust be 4-byte aligned)

8. (FOG_COCORDI NATE_ARRAY nust be disabled.)

o For the NV10 inpl enentation-dependent validity check based on
ot her Open@ rendering state is FALSE if any of the followi ng are true

1. (COLOR_LOGE C CP is enabl ed - AND-
The logic op is not COPY)

2. (LIGHT_MODEL_TWO SIDE is true.)

3. Either texture unit
with a non-zero border.

is enabled and active with a texture

4. Several other obscure unspecified reasons.

190

NVIDIA OpenGL Extension Specifications SGIS_texture_lod

Nanme
SE@ S texture | od
Nane Strings
GL_SA S texture_ | od
Ver si on
$Dat e: 1997/05/30 01:34:44 $ $Revision: 1.8 $
Nurnber
24
Dependenci es

EXT _texture is required

EXT texture3D affects the definition of this extension
EXT_texture_object affects the definition of this extension
SA@ detail _texture affects the definition of this extension
SA _sharpen_texture affects the definition of this extension

Overvi ew

Thi s extension inposes two constraints related to the texture |evel of
detail parameter LOD, which is represented by the Greek character |anbda
in the GL Specification. One constraint clanps LOD to a specified
floating point range. The other linmts the selection of m pmap inmage
arrays to a subset of the arrays that woul d ot herwi se be consi dered.

Toget her these constraints allow a large texture to be | oaded and
used initially at low resolution, and to have its resolution raised
gradual ly as nore resolution is desired or available. |nmage array
specification is necessarily integral, rather than continuous. By
provi di ng separate, continuous clanping of the LOD paraneter, it is
possi ble to avoid "popping" artifacts when higher resol ution inmages
are provided.

Not e: because the shape of the mipmap array is always determ ned by
t he di nensions of the level 0 array, this array nust be | oaded for
m pmapping to be active. If the level 0 array is specified with a
nul | image pointer, however, no actual data transfer will take
place. And a sufficiently tuned inplenentation m ght not even

al l ocate space for a level O array so specified until true inmage
data were presented.

| ssues

* Shoul d detail and sharpen texture operate when the |evel 0 inmage
is not being used?

A: Sharpen yes, detail no.

* Shoul d the shape of the m pmap array be determ ned by the
di mensi ons of the level 0 array, regardl ess of the base |evel?

191

SGIS_texture_lod NVIDIA OpenGL Extension Specifications

A: Yes, this is the better solution. Driving everything from
t he base | evel breaks the proxy query process, and all ows
m pmap arrays to be placed arbitrarily. The issues of
requiring a level 0 array are partially overcone by the use
of null-point |oads, which avoid data transfer and,
potentially, data storage allocation.

* Wth the arithmetic as it is, alinear filter mght access an
array past the Iimt specified by MAX LEVEL or p. But the
results of this access are not significant, because the blend
will weight themas zero.
New Procedures and Functions
None
New Tokens

Accepted by the <pnanme> paraneter of TexParaneteri, TexParaneterf,
TexParameteriv, TexParaneterfv, GetTexParaneteriv, and Cet TexParaneterfv:

TEXTURE_M N_LOD SG S 0x813A
TEXTURE_MAX_LOD SG S 0x813B
TEXTURE_BASE LEVEL_SG S 0x813C
TEXTURE_MAX_LEVEL_SG S 0x813D

Additions to Chapter 2 of the 1.0 Specification (OpenG. Qperation)

None

192

NVIDIA OpenGL Extension Specifications SGIS_texture_lod

Additions to Chapter 3 of the 1.0 Specification (Rasterization)

G Specification Table 3.7 is updated as foll ows:

Nane Type Legal Val ues
TEXTURE_WRAP_S i nt eger CLAMP, REPEAT
TEXTURE_WRAP_T i nt eger CLAMP, REPEAT
TEXTURE_WRAP_R EXT i nteger CLAMP, REPEAT
TEXTURE_M N_FI LTER i nt eger NEAREST, LI NEAR,

NEAREST M PMAP_NEAREST,
NEAREST_M PMAP_LI NEAR,
LI NEAR_ M PMAP_NEAREST,
LI NEAR_M PMAP_LI NEAR,
FILTERA_SG S
TEXTURE_MAG_FI LTER i nt eger NEAREST, LI NEAR,
FI LTER4_SG S,
LI NEAR DETAI L_SG S,
LI NEAR _DETAI L_ALPHA SG S,
LI NEAR DETAI L_COLOR SG S
LI NEAR_SHARPEN SG S,
LI NEAR_SHARPEN_ALPHA SG S,
LI NEAR_SHARPEN_COLOR SG S

TEXTURE_BORDER_COLOR 4 floats any 4 values in [0,1]
DETAI L_TEXTURE LEVEL_SA S i nt eger any non-negative integer
DETAI L_TEXTURE_MODE_SG S i nt eger ADD, MODULATE

TEXTURE M N LOD S S fl oat any val ue
TEXTURE MAX LOD SA S fl oat any val ue

TEXTURE_BASE LEVEL_Sd S i nt eger any non-negative integer
TEXTURE_MAX LEVEL_SA S i nt eger any non-negative integer

Table 3.7: Texture paraneters and their val ues.

Base Array

Al though it is not explicitly stated, it is the clear intention

of the OpenGL specification that texture mnification filters
NEAREST and LI NEAR, and all texture magnification filters, be
applied to image array zero. This extension introduces a

paranmeter, BASE LEVEL, that explicitly specifies which array

level is used for these filter operations. Base level is specified
for a specific texture by calling TexParaneteri, TexParaneterf,
TexParameteriv, or TexParaneterfv with <target> set to TEXTURE 1D
TEXTURE_2D, or TEXTURE_3D EXT, <pnanme> set to TEXTURE_BASE LEVEL_SG S,
and <paranr set to (or <parans> pointing to) the desired value. The
error INVALID VALUE is generated if the specified BASE LEVEL is
negati ve.

Level of Detail C anping

The | evel of detail paraneter LOD is defined in the first paragraph

of Section 3.8.1 (Texture Mnification) of the GL Specification, where
it is represented by the Greek character |anbda. This extension
redefines the definition of LOD as foll ows:

193

SGIS_texture_lod NVIDIA OpenGL Extension Specifications

LOD (x,y) = log_base 2 (Qx,Yy))

/ MAX_LOD LOD > MAX_LOD

LOD = (LOD LOD >= MN_LOD and LOD <= MAX LOD
\' MNLOD LOD < MN LOD
\ undefined M N LOD > MAX LOD

The variable Qin this definition represents the Greek character rho,
as it is used in the Qpen@ Specification. (Recall that Qis conputed
based on the di nensions of the BASE LEVEL image array.) MN_LOD is the
val ue of the per-texture variable TEXTURE MN LOD SAS, and MAX LOD is
the value of the per-texture variable TEXTURE MAX LOD SA S.

Initially TEXTURE_LM N_LOD SA S and TEXTURE_MAX LOD SA@ S are -1000 and
1000 respectively, so they do not interfere with the normal operation of
texture mappi ng. These values are respecified for a specific texture
by calling TexParaneteri, TexPareneterf, TexParaneteriv, or
TexParameterfv with <target> set to TEXTURE_ 1D, TEXTURE 2D, or
TEXTURE_3D _EXT, <pname> set to TEXTURE M N LOD SG S or
TEXTURE_MAX LOD SGE S, and <parane set to (or <params> pointing to) the
new value. It is not an error to specify a maxi mum LOD value that is

| ess than the mni num LOD val ue, but the resulting LOD values are

not defi ned.

LOD is clanped to the specified range prior to any use. Specifically,
the m pmap i mage array sel ecti on described in the M pnmappi ng Subsecti on
of the G. Specification is based on the clanped LOD value. Al so, the
determ nati on of whether the mnification or magnification filter is
used is based on the clanped LOD.

M pmap Conpl et eness

The G. Specification describes a "conplete" set of mpmap i mage arrays
as array levels 0 through p, where p is a well defined function of the
di mensi ons of the level 0 image. This extension nodifies the notion
of compl eteness: instead of requiring that all arrays O through p

meet the requirements, only arrays 0 and arrays BASE LEVEL through
MAX_LEVEL (or p, whichever is smaller) nust neet these requirenents.
The specification of BASE LEVEL was descri bed above. MAX LEVEL is
specified by calling TexParameteri, TexPareneterf, TexParaneteriv, or
TexParameterfv with <target> set to TEXTURE_ 1D, TEXTURE 2D, or
TEXTURE_3D _EXT, <pname> set to TEXTURE MAX LEVEL_SA S, and <parant set
to (or <params> pointing to) the desired value. The error

I NVALI D VALUE is generated if the specified MAX LEVEL is negative.

If MAX_LEVEL is smaller than BASE LEVEL, or if BASE LEVEL is greater
than p, the set of arrays is inconplete.

Array Sel ection

Magni fi cati on and non-m pmapped mnification are always perforned
using only the BASE LEVEL inmage array. |If the minification filter
is one that requires m pmapping, one or two array levels are

sel ected using the equations in the table below, and the LOD val ue
is clanped to a maxi num val ue that insures that no array beyond

194

NVIDIA OpenGL Extension Specifications SGIS_texture_lod

the limts specified by MAX LEVEL and p is accessed.

Mnification Filter Maxi mum LOD Array |evel (s)
NEAREST_M PMAP_NEAREST M + 0.4999 floor(B + 0.5)
LI NEAR_M PNMAP_NEAREST M + 0.4999 floor(B + 0.5)
NEAREST_M PNVAP_LI NEAR M floor(B), floor(B)+1
LI NEAR_M PMAP_LI NEAR M floor(B), floor(B)+1
wher e:

M = m n(MAX_LEVEL, p) - BASE_LEVEL

B = BASE_LEVEL + LOD

For NEAREST_M PMAP_NEAREST and LI NEAR_M PMAP_NEAREST t he specified
image array is filtered according to the rules for NEAREST or

LI NEAR respectively. For NEAREST_M PMAP_LI NEAR and

LI NEAR_M PVAP_LI NEAR bot h selected arrays are filtered according to
the rules for NEAREST or LINEAR, respectively. The resulting val ues
are then bl ended as described in the M pmappi ng section of the
Open@ speci fication

Additional Filters

Sharpen filters (described in S@ S sharpen_texture) operate on array

| evel s BASE LEVEL and BASE LEVEL+1. |If the m ni mum of MAX LEVEL and p
is not greater than BASE LEVEL, then sharpen texture reverts to a

LI NEAR magni fication filter. Detail filters (described in

SA S detail _texture) operate only when BASE LEVEL is zero

Texture Capacity

In Section 3.8 the Open@ specification states:

"In order to allowthe client to neaningfully query the maxi mum

i mage array sizes that are supported, an inplenentation nmust not
allow an image array of level one or greater to be created if a
“conplete' set of inmage arrays consistent with the requested
array could not be supported.”

Gven this extension's redefinition of conpl eteness, the above
par agraph should be rewitten to indicate that all levels of the
“conplete' set of arrays nust be supportable. E. g.

"In order to allowthe client to neaningfully query the maxi mum

i mage array sizes that are supported, an inplenentation nmust not
allow an image array of level one or greater to be created if a
“conplete' set of inmage arrays (all levels O through p) consistent
with the requested array could not be supported.™

Additions to Chapter 4 of the 1.0 Specification (Per-Fragment Operations
and the Franme Buffer)

None

195

SGIS_texture_lod NVIDIA OpenGL Extension Specifications

Additions to Chapter 5 of the 1.0 Specification (Special Functions)
None
Additions to Chapter 6 of the 1.0 Specification (State and State Requests)
None
Additions to the GX Specification
None
Dependenci es on EXT_texture
EXT _texture is required.
Dependenci es on EXT_t exture3D

If EXT_texture3D is not supported, references to 3D texture napping and
to TEXTURE 3D EXT in this docunment are invalid and shoul d be ignored.

Dependenci es on EXT_t exture_obj ect
If EXT_texture_object is inplemented, the state val ues naned
TEXTURE_M N_LOD SE S
TEXTURE_MAX_LOD SA S
TEXTURE_BASE_LEVEL_SA S
TEXTURE_MAX_LEVEL_SA S
are added to the state vector of each texture object. Wen an attribute
set that includes texture information is popped, the bindings and
enables are first restored to their pushed val ues, then the bound
textures have their LOD and LEVEL parameters restored to their pushed
val ues.

Dependencies on SA S detail _texture

If SA@S detail _texture is not supported, references to detail texture
mappi ng in this docunent are invalid and should be ignored.

Dependenci es on SA S _sharpen_texture

If SA@ S sharpen_texture is not supported, references to sharpen texture
mappi ng in this docunent are invalid and should be ignored.

Errors

I NVALI D VALUE is generated if an attenpt is nade to set
TEXTURE_BASE_LEVEL_SA S or TEXTURE MAX_LEVEL_SA S to a negative val ue.

196

NVIDIA OpenGL Extension Specifications

New St at e

CGet Val ue

TEXTURE M N LOD SA S
TEXTURE_MAX LOD SA S
TEXTURE BASE LEVEL _Sd S
TEXTURE_MAX LEVEL _SA S

Cet TexPar aneterfv
Cet TexPar aneterfv
Cet TexPar aneteriv
Cet TexPar aneteriv

New | npl ement ati on Dependent State

None

197

Initial
Type Val ue

SGIS texture lod

texture
texture
texture
texture

WGL_EXT_swap_control NVIDIA OpenGL Extension Specifications

Nanme

EXT_swap_contr ol
Nane Strings

WEL_EXT_swap_contr ol
Ver si on

Date: 1/27/1999 Revi sion: 1.3
Nurnber

172
Dependenci es

WEL_EXT _extensions_string is required.
Overvi ew

This extension allows an application to specify a m ninmum periodicity
of col or buffer swaps, neasured in video frame periods.

New Procedures and Functi ons
BOOL wgl Swapl nt erval EXT(i nt interval)
i nt wgl Get Swapl nt er val EXT(voi d)

New Tokens
None

Additions to Chapter 2 of the 1.2 G Specification (OpenG Operation)
None

Additions to Chapter 3 of the 1.2 G Specification (Rasterization)
None

Additions to Chapter 4 of the 1.2 G Specification (Per-Fragnent Operations
and the Franebuffer)

None
Additions to Chapter 5 of the 1.2 G Specification (Special Functions)
None
Additions to Chapter 6 of the 1.2 G Specification (State and State Requests)

None

198

NVIDIA OpenGL Extension Specifications WGL_EXT_swap_control

Additions to the WEL Specification

wgl Swapl nt er val EXT speci fies the m ni num nunber of video frane peri ods
per buffer swap for the wi ndow associated with the current context.
The interval takes effect when SwapBuffers or wgl SwapLayer Buf fer

is first called subsequent to the wgl Swapl nt erval EXT cal | .

The paraneter 'interval' specifies the mni mum nunber of video franes
that are di splayed before a buffer swap will occur.

A video frame period is the time required by the nonitor to display a
full frame of video data. In the case of an interlaced nonitor,

this is typically the tine required to display both the even and odd
fields of a frame of video data. An interval set to a value of 2
means that the color buffers will be swapped at nost every other video
frane.

If "interval' is set to a value of 0, buffer swaps are not synchron-
ized to a video frame. The 'interval' value is silently clanped to
t he maxi mum i npl enent at i on- dependent val ue supported before being
stored.

The swap interval is not part of the render context state. It cannot
be pushed or popped. The current swap interval for the w ndow
associated with the current context can be obtained by calling

wgl Get Swapl nt erval EXT. The default swap interval is 1.

Because there is no way to extend wgl, this call is defined in the ICD
and can be called by obtaining the address wi th wgl Get ProcAddress.
Because this is not a GL extension, it is not included in the
GL_EXTENSI ONS string.

Errors
If the function succeeds, the return value is TRUE. If the function
fails, the return value is FALSE. To get extended error information,
call GetlLastError.
ERROR | NVALI D_DATA The "interval' paraneter is negative.
New St at e
None

New | npl ement ati on Dependent State

None

199

