
All About OpenGL Extensions,
including specifications

for some significant OpenGL extensions

Mark J. Kilgard *

NVIDIA Corporation

OpenGL is an extensible low-level graphics API. Extensible is the key word. OpenGL
implementations are free to extend OpenGL’s basic rendering functionality with new rendering
operations. Scores of OpenGL extensions have been specified and implemented. These
extensions provide OpenGL application developers with new rendering features above and
beyond the features specified in the official OpenGL standard. OpenGL extensions keep the
OpenGL API current with the latest innovations in graphics hardware and rendering algorithms.
Better yet, extensions provide OpenGL with that fresh minty taste that developers love.

The document reviews the OpenGL extension mechanism and describes a set of new significant
OpenGL extensions likely to be interesting to PC game developers. By reading this document,
you will learn not just what extensions are but how to use them portably in your programs and
how to read OpenGL extension specifications. The appendixes contains selected significant
OpenGL extension specifications of interest to the PC 3D game developer. Note that in some
cases as noted, several extension specifications are preliminary versions.

1. How OpenGL Extensions are Documented
An OpenGL extension is defined by its specification. These specifications are typically written as
standard ASCII text files. OpenGL extension specifications are written by and for OpenGL
implementers. A well-written OpenGL specification is documented to the level of detail needed
for a hardware designer and/or OpenGL library engineer to unambiguously implement the
extension. This means that OpenGL application programmers should not expect an extension’s
specification to fully justify why the functionality exists or how an OpenGL application would go
about using the functionality. An OpenGL extension is not a tutorial on how to use the particular
extension. Still, being able to read and understand an OpenGL specification helps you, the
application programmer, fully understand an OpenGL extension’s functionality.

2. Where to Find OpenGL Extension Specifications
The latest public OpenGL specifications can be found on the www.opengl.org web site. Note that
extension specifications are updated from time to time based on reviews and implementation
feedback.

3. How to Read an OpenGL Extension Specification
When reading an OpenGL extension specification, it helps to be familiar with the original OpenGL
specification. The operation of an OpenGL extension is described as additions and changes to
the core OpenGL specification. Having a copy of the core OpenGL specification handy is a good
idea when reviewing an OpenGL specification.

* Mark graduated with B.A. in Computer Science from Rice University and is a System Software
Engineer at NVIDIA. Mark is the author of OpenGL Programming for the X Window System
(Addison-Wesley, ISBN 0-201-48359-9) and can be reached by electronic mail addressed to
mjk@nvidia.com

NVIDIA Corporation Advanced OpenGL Development

2

OpenGL extension specifications consist of multiple sections. There is common form established
by convention used by nearly all OpenGL extension specifications. Often within a specification,
the gl and GL prefixes on routine names and tokens are assumed. The following describes the
purpose of the most common sections in the order that they normally appear in extension
specifications:

Name
Lists the official name of the extension. This name uses underscores instead of spaces
between words. The name also begins with a prefix that indicates who developed the
extension. This prefix helps to avoid naming conflicts if two independent groups
implement a similar extension. It also helps identity who is promoting use of the
extension. For example: SGIS_point_parameters was an extension proposed by
Silicon Graphics. The SGIS prefix belongs to Silicon Graphics. SGI uses the SGIS prefix
to indicate the extension is specialized and may not be available on all SGI hardware.
Other prefixes in use are:

• ARB – Extensions officially approved by the OpenGL Architectural Review Board
• EXT – Extensions agreed upon by multiple OpenGL vendors
• HP – Hewlett-Packard
• IBM – International Business Machines
• INTEL – Intel
• NVIDIA – NVIDIA Corporation, coolest 3D company on the planet
• MESA – Brian Paul’s freeware portable OpenGL implementation
• SGIX – Silicon Graphics (experimental)
• SUN – Sun Microsystems
• WIN – Microsoft

Note that the SGIS_point_parameters extension has since been standardized by
other OpenGL vendors such as NVIDIA. So now there is also an
EXT_point_parameters extension with the same basic functionality as the SGIS
version. The EXT prefix indicates that multiple vendors have agreed to support the
extension. Successful OpenGL extensions are often promoted to EXT or ARB extensions
or made an official part of OpenGL in a future revision to the core OpenGL specification.
Almost all of the new functionality in OpenGL 1.1 and 1.2 showed up first as OpenGL
extensions.

Name Strings
The name string or strings is used to indicate that the extension is supported by a given
OpenGL implementation. Applications can query the GL_EXTENSIONS string with
OpenGL’s glGetString to determine what extensions are available. OpenGL also
supports the idea of window system dependent extensions. Core OpenGL extension
name strings are generally prefixed with GL while window system dependent extensions
are prefixed with GLX for the X Window System or WGL for Win32 based on what window
system the extension applies to. Note that there may be multiple strings if the extension
provides both core OpenGL rendering functionality and window system dependent
functionality.

Version
A source code control revision string to keep track of what version of the specification the
given text file represents. It is important to make sure that you have the latest version of
the extension specification in case there are any important changes. Normally the
version string has the date the extension was last updated.

Number

NVIDIA Corporation Advanced OpenGL Development

3

Each OpenGL extension is assigned a unique number. Silicon Graphics allocates these
numbers to ensure that OpenGL extensions do not overlap in their usage of enumerants
or protocol tokens. This number is only important to extension implementers.

Dependencies
Often an extension specification builds on the functionality of pre-existing extensions.
This section documents what extensions the specified extension depends on.
Dependencies indicate that another extension “is required” to support the specified
extension or that the specified extension “affects” the specification of another extension.
When an extension affects the specification of another extension, the affecting extension
is responsible for fully documenting the interactions between the two extensions.

The dependencies section often also indicates which version of the OpenGL core
standard that the extension specification is based on. Later sections specify the
extension based on updates to the relevant section of the particular OpenGL specification
that the extension is based on.

You can often tell how important a given extension is to the evolution of OpenGL based
on how many other extensions are listed that depend on or are affected by the given
extension. The multitexture extension to be discussed later affects gobs of other
extensions!

Overview
The section provides a description, often terse and without justification, for the
extension’s specified functionality. If you are trying to figure out what the extension does,
this is the most useful section of an OpenGL extension specification. Do not expect a
tutorial though.

Issues
Often there are issues that need to be resolved in the specification of an extension. This
section documents open issues and states the resolution to resolved issues. These
issues are often things of interest to the extension implementer, but can also help a
programmer understand how the extension really works.

New Procedures and Functions
This section lists the function prototypes for any new procedures and functions that the
extension adds. Keep in mind that specifications often leave out the gl prefix when
discussing routines. Also note that the extension’s new functions will be suffixed with the
same letters used as the prefix for the extension name.

New Tokens
This section lists the tokens (also called enumerants) that the extension adds. The
routines that accept each set of new enumerants are documented. The integer value of
the enumerants is documented here. These values should be added to <GL/gl.h>.
Keep in mind that specifications often leave out the GL prefix when discussing
enumerants. Also note that the extension’s new enumerants will be suffixed with the
same letters used as the prefix for the extension name.

Additions to Chapter XX of the 1.X Specification (XXX)
These sections document how the core OpenGL specification should be amended to add
the extension’s functionality to the core OpenGL functionality. Notice that the exact
version of the core OpenGL specification (such as 1.0, 1.1, or 1.2) is documented. The
chapters typically amended by an extension specification are:

• Chapter 2 – OpenGL Operations
• Chapter 3 – Rasterization

NVIDIA Corporation Advanced OpenGL Development

4

• Chapter 4 – Fragments and the Framebuffer
• Chapter 5 – Special Functions
• Chapter 6 – State and State Requests

These sections are quite legalistic. They indicate precisely how the OpenGL
specification wording should be amended or changed. Often tables within the
specification are amended as well.

Additions to the GLX Specification
If an extension has any window system dependent functionality affecting the GLX
interface to the X Window System, these issues would be documented here.

GLX Protocol
When implementing the extension for the X Window System, if any special X11 extension
protocol for the GLX extension is required to support the extension, the protocol would be
documented in this section.

Dependencies on XXX
These sections describe how the extension depends on some other extension that was
listed in the Dependencies section. Usually the wording says that if the other extension is
not supported, simply ignore the portion of this extension dealing with the dependent
extension’s state and functionality.

Errors
If the extension introduces any new error conditions particular to the extension, they are
documented here.

New State
Extensions typically add new state variables to OpenGL’s state machine. These new
variables are documented in this section. The variable’s get enumerant, type, get
command, initial value, description, section of the specification describing the state
variable’s function, and the attribute group that the state belongs to are all documented in
tables in this section.

New Implementation Dependent State
Extensions may add implementation dependent state. These are typically maximum and
minimum supported ranges for the extension functionality. For example, what is the
widest line size supported by the extension. These values can be queried through
OpenGL’s glGet family of routines.

Backward Compatibility
If the extension supercedes an older extension, issues surrounding backward
compatibility with the older extension are documented in this section.

Note that these sections are merely established by convention. While the conventions for
OpenGL extension specifications are normally followed, extensions vary in how closely they stick
to the conventions. Generally, the more preliminary an extension is, the more loosely specified it
is. Hopefully after sufficient review and even implementation, the specification language and
format is improved to provide an unambiguous final specification.

4. Portably Using OpenGL Extensions
The advantage of using OpenGL extensions is getting access to cutting edge rendering
functionality so you application can achieve higher performance and higher quality rendering.
OpenGL extensions give you access to the latest features of the hottest new graphics hardware.

NVIDIA Corporation Advanced OpenGL Development

5

The problem with OpenGL extensions is that lots of OpenGL implementations, particularly older
implementations, will not support the extensions that you would like to use. When you write an
OpenGL application that uses extensions, you should make sure that your application still works
when the extension is not supported. At the very least your program should report that it requires
whatever extension is missing and exit without crashing.

The first step to using OpenGL extensions is to locate the copy of the <GL/gl.h> header file that
advertises the API interfaces for the extensions that you plan to use. Typically you can get this
from your OpenGL implementation vendor or OpenGL driver vendor. You could also get the API
interface prototypes and macros directly from the extension specifications, but getting the right
<GL/gl.h> from your OpenGL vendor is definitely the preferred way.

You will notice that <GL/gl.h> sets C preprocessor macros to indicate whether the header
advertises the interface of a particular extension or not. For example, the basic <GL/gl.h>
supplied with Visual C++ 4.2 has a section reading:

/* Extensions */
#define GL_EXT_vertex_array 1
#define GL_WIN_swap_hint 1
#define GL_EXT_bgra 1
#define GL_EXT_paletted_texture 1
#define GL_EXT_clip_disable 1

These macros indicate that the header file advertises the above five extensions. The EXT_bgra
extension lets you read and draw pixels in the Blue, Green, Red, Alpha component order as
opposed to OpenGL’s standard RGBA color component ordering. If you wanted to write a
program to use the EXT_bgra extension, you could test that the extension is supported at
compile time like this:

#ifdef GL_EXT_bgra
 glDrawPixels(width, height, GL_BGRA_EXT, GL_UNSIGNED_BYTE, pixels);
#endif

When GL_EXT_bgra is defined, you can expect to find the GL_BGRA_EXT enumerant defined.
Note that if the EXT_bgra extension were not supported, you would expect the glDrawPixels
line above to generate a compiler error because the base OpenGL standard does not define the
GL_BGRA_EXT enumerant.

So based on the extension name #defines in <GL/gl.h>, you can write your code so that it
can compile in the extension functionality if your compiler environment supports the extension’s
interfaces. The next problem is that even though your compiler environment may support the
extension’s interface at compile-time, at run-time, the target system where you run your
application may not support the extension. In the Win32 environment, different OpenGL ICD
drivers can support different OpenGL extensions depending on what the hardware and the
vendor’s ICD driver writers implement in the ICD driver.

Assuming that your application thread is made current to an OpenGL rendering context, the
following routine can be used to determine at run-time if the OpenGL implementation really
supports a particular extension:

#include <GL/gl.h>
#include <strength>

int
isExtensionSupported(const char *extension)

NVIDIA Corporation Advanced OpenGL Development

6

{
 const GLubyte *extensions = NULL;
 const GLubyte *start;
 GLubyte *where, *terminator;

 /* Extension names should not have spaces. */
 where = (GLubyte *) strchr(extension, ' ');
 if (where || *extension == '\0')
 return 0;

 extensions = glGetString(GL_EXTENSIONS);

 /* It takes a bit of care to be fool-proof about parsing the
 OpenGL extensions string. Don't be fooled by sub-strings,
 etc. */
 start = extensions;
 for (;;) {
 where = (GLubyte *) strstr((const char *) start, extension);
 if (!where)
 break;
 terminator = where + strlen(extension);
 if (where == start || *(where - 1) == ' ')
 if (*terminator == ' ' || *terminator == '\0')
 return 1;
 start = terminator;
 }
 return 0;
}

With the isExtensionSupported routine, you can check if the current OpenGL rendering
context supports a given OpenGL extension. To make sure that the EXT_bgra extension is
supported before using it, you can do the following:

 /* At context initialization. */
 int hasBGRA = isExtensionSupported(“GL_EXT_bgra”);

 /* When trying to use EXT_bgra extension. */
#ifdef GL_EXT_bgra
 if (hasBGRA) {
 glDrawPixels(width, height, GL_BGRA_EXT, GL_UNSIGNED_BYTE, pixels);
 } else
#endif
 {
 /* No EXT_bgra so bail (or implement software workaround). */
 fprintf(stderr, “Needs EXT_bgra extension!\n”);
 exit(1);
 }

Notice that if the EXT_bgra extension is lacking at either run-time or compile-time, the code
above will detect the lack of EXT_bgra support. Sure the code is a bit messy, but the code
above works. You can skip the compile-time check if you know what development environment
you are using and you do not expect to ever compile with a <GL/gl.h> that does not support the
extensions that your application uses. But the run-time check really should be performed since
who knows on what system your program ends up getting run on.

NVIDIA Corporation Advanced OpenGL Development

7

5. Win32’s Scheme for Getting Extension Function Pointers
The example above for safely detecting and using the EXT_bgra extension at run-time and
compile-time is straightforward because the EXT_bgra simply adds two new enumerants
(GL_BGRA_EXT and GL_BGR_EXT) and does not require any new function pointers.

Using an extension that includes new function call entry-points is harder in Win32 because you
must first request the function pointer from the OpenGL ICD driver before you can call the
OpenGL function.

The EXT_point_parameters extension provides eye-distance attenuation of OpenGL’s point
primitive. This extension is used by Id Software in Quake 2 when the extension is present for
rendering particle systems. With the extension, firing weapon and explosions are rendered as
huge clusters of OpenGL point primitives with OpenGL automatically adjusting the point size
based on the distance of the particles from the viewer. Closer particles appear bigger; particles in
the distance appear smaller. A particle whose size would be smaller than a pixel is automatically
faded based on its sub-pixel size. Anyone that wants to see the improvement this extension
brings to a 3D game should play Quake 2 on a PC with NVIDIA’s RIVA 128 graphics processor.
Start a gun battle and check out the particles!

The EXT_point_parameters extension adds two new OpenGL entry points called
glPointParameterfEXT and glPointParameterfvEXT. These routines allow the
application to specify the attenuation equation parameters and fade threshold. The problem is
that because of the way Microsoft chose to support OpenGL extension functions, an OpenGL
application cannot simply link with these functions. The application must first use the
wglGetProcAddress1 routine to query the function address and then call through the returned
address to call the extension function.

First, declare function prototype typedefs that match the extension’s entry points. For example:

#ifdef _WIN32
typedef void (APIENTRY * PFNGLPOINTPARAMETERFEXTPROC)
 (GLenum pname, GLfloat param);
typedef void (APIENTRY * PFNGLPOINTPARAMETERFVEXTPROC)
 (GLenum pname, const GLfloat *params);
#endif

Your <GL/gl.h> header file may already have these typedefs declared if your <GL/gl.h>
defines the GL_EXT_point_parameters macro. Now declare global variables of the type of
these function prototype typedefs like this:

#ifdef _WIN32
PFNGLPOINTPARAMETERFEXTPROC glPointParameterfEXT;
PFNGLPOINTPARAMETERFVEXTPROC glPointParameterfvEXT;
#endif

The names above exactly match the extension’s function names. Once we use
wglGetProcAddress to assign these function variables the address of the OpenGL driver’s
extension functions, we can call glPointParameterfEXT and glPointParameterfvEXT as
if they were normal functions. You pass wglGetProcAddress the name of the routine as an
ASCII string. Verify that the extension is supported and, if so, initialize the function variables like
this:

1 Note that wglGetProcAddress was introduced to Windows 95 in OEM Service Release 2.

NVIDIA Corporation Advanced OpenGL Development

8

 int hasPointParams = isExtensionSupported("GL_EXT_point_parameters");
#ifdef _WIN32
 if (hasPointParams) {
 glPointParameterfEXT = (PFNGLPOINTPARAMETERFEXTPROC)
 wglGetProcAddress("glPointParameterfEXT");
 glPointParameterfvEXT = (PFNGLPOINTPARAMETERFVEXTPROC)
 wglGetProcAddress("glPointParameterfvEXT");
 }
#endif

Note that before the code above is called, you should have a current OpenGL rendering context.

With the function variables properly initialized to the extension entry-points, you can use the
extension like this:

 if (hasPointParams) {
 static GLfloat quadratic[3] = { 0.25, 0.0, 1/60.0 };
 glPointParameterfvEXT(GL_DISTANCE_ATTENUATION_EXT, quadratic);
 glPointParameterfEXT(GL_POINT_FADE_THRESHOLD_SIZE_EXT, 1.0);
 }

Be careful because the function returned by wglGetProcAddress is only be guaranteed to work
for the OpenGL rendering context that was current when wglGetProcAddress was called. If
you have multiple contexts that return different extension function addresses, keeping the
function addresses in global variables as shown above may create problems. You may need to
maintain distinct function addresses on a per-context basis. Specifically, the Microsoft
documentation for wglGetProcAddress warns:

The [Microsoft] OpenGL library supports multiple implementations of its functions.
Extension functions supported in one rendering context are not necessarily available in a
separate rendering context. Thus, for a given rendering context in an application, use the
function addresses returned by the wglGetProcAddress function only.

The spelling and the case of the extension function pointed to by string must be identical
to that of a function supported and implemented by OpenGL. Because extension
functions are not exported by OpenGL, you must use wglGetProcAddress to get the
addresses of vendor-specific extension functions.

The extension function addresses are unique for each pixel format. All rendering contexts
of a given pixel format share the same extension function addresses.

Win32’s requirement that you use wglGetProcAddress is a real drag, but if you do everything
right, using OpenGL extensions works and gives you access to amazing new OpenGL features.

Amazing New OpenGL Features
So what OpenGL extensions are in the works to help OpenGL programmers write better high-
performance, high-quality games and other 3D applications?

Here we review seven OpenGL extensions that are certain to be useful for PC game and 3D
application programmers. The functionality of each extension will be briefly described in this
section, but the appendixes below provide the complete extension specifications for the seven
extensions. This provides you the opportunity to learn how to read and understand OpenGL
extension specifications for yourself.

NVIDIA Corporation Advanced OpenGL Development

9

The first three extensions represent already finalized, implemented, and available extensions.
The next four extensions are nearing finalization with at least one of the four (the multitexture
extension) being partially implemented today. Hardware support for all four of these preliminary
extensions will be available by the end of 1998.

Figure 1 The pointburst demo uses the point parameters extension running on RIVA 128.
The points have exploded outward in a circle from the center of the ground plane. The
points closer to the viewer are large, while the far away points on the other side of the

explosion source are small.

The Point Parameters Extension
The above discussion has already explained the basic functionality provided by the
EXT_point_parameters extension. The extension was originally proposed by Silicon
Graphics to address the needs of flight simulators for rendering point light sources such as
landing lights that attenuate their brightness based on the distance from the viewer. Id Software
also found the extension useful for rendering particle effects in Quake 2. In unextended OpenGL,
the point primitive’s size is controlled with the glPointSize routine. The point size is specified
as a constant number of pixels. Because glPointSize can not be called within glBegin and
glEnd, it is difficult to render efficiently a batch of points of various sizes to simulate a particle
system such as water drops or exploding shrapnel.

What the extension provides is a means to attenuate the point size based on distance from the
viewer. The further away the point primitive is from the viewer the smaller it should be rendered.
If the point size becomes smaller than a pixel, the point’s alpha component is attenuated based
on the sub-pixel size to dim the point.

In addition to SGI’s implementation of the extension for InfiniteReality, the extension has also
been implemented in NVIDIA’s OpenGL ICD driver for RIVA 128 and Brian Paul has implemented
the extension in Mesa, the freeware implementation of the OpenGL programming interface. More
implementations of the point parameters extension are expected. Figure 1 shows a snap shot of
an OpenGL demo that uses the EXT_point_parameters extension.

Appendix A is the EXT_point_parameters specification.

NVIDIA Corporation Advanced OpenGL Development

10

The Paletted Texture Extension
Textures are typically 2D arrays of RGB or RGBA color values. For colorful textures with 8 bits of
precision per color component (3 or 4 bytes per texel), large textures can eat up quite a bit of
texture memory. The EXT_paletted_texture enables a texture to be specified as a 2D array
of indices into a texture palette. Generally the indices are 8 bits per texel, but the texture palette
itself contains full 24-bit or 32-bit color values. For textures that use 256 or fewer unique colors, a
paletted texture can take up a lot less texture memory. Of course, the texture palette takes up
some space too though.

Microsoft proposed the paletted texture extension to reduce the amount of texture memory
needed by games and other 3D applications. Paletted textures also have the advantage that
colors in the palette can be edited to change effectively the colors within the texture.

Appendix B is the EXT_paletted_texture specification.

The Shared Texture Palette Extension
The paletted texture extension provides a unique palette per texture, but this generality can make
the management of texture palettes in hardware difficult. Since there may be just a single texture
palette within the hardware rendering engine, the hardware may be continually loading the
hardware texture palette on texture binds because each paletted texture maintains its own
palette. By enabling the shared texture palette with glEnable, all the paletted textures of the
rendering texture will share a single palette.

Appendix C is the EXT_shared_texture_palette specification.

Figure 2 The right image uses an second rendering pass to combine a second texture with
the textured floor. The second textured rendering pass cycles through a set of shifting
caustic patterns to simulate the effect of underwater lighting. The left image shows the

scene without the underwater effect from the second texture pass. With unextended
OpenGL, the underwater effect requires two textured rendering passes, but with the

OpenGL multitexture extension on hardware such as NVIDIA’s multitexture-capable RIVA
TNT graphics processor, the scene can be rendered with a single rendering pass.

The Multitexture Extension
The SGIS_multitexture extension provides the capability to specify multiple sets of texture
coordinates that look up into multiple textures. Multitexture support will redefine the performance

NVIDIA Corporation Advanced OpenGL Development

11

and quality levels seen in tomorrow’s 3D games. Extra rendering passes to blend in lightmaps,
as done by Quake 2, can be performed in a single rendering pass with the multitexture extension.
Multitexture is useful for all manner of cool effects, not just lightmaps. Figure 2 shows how
multitexturing can be used to simulate a dynamic underwater caustic effect.

The SGIS_multitexture extension is very likely to be renamed the ARB_multitexture
extension when it is finalized. The ARB prefix would indicate not just that multiple OpenGL
vendors intend to implement the extension (that is what EXT means) but that the OpenGL
Architectural Review Board, OpenGL’s governing body, considers the multitexture functionality to
be an important enough OpenGL capability to approve it as an ARB endorsed standard.

Appendix D is the preliminary SGIS_multitexture specification.

NVIDIA’s Multitexture Combiners Extension
One problem with the SGIS_multitexture extension as specified is a straightforward, but
simplistic, means of combining each texture with the results from the previous texture stage (see
the ASCII diagram of this in the multitexture specification in Appendix D). Most of the vendors
involved in the discussions of multitexturing for OpenGL agree that this strict pipeline model is too
limiting for many interesting applications for multitexture. The difficulty is coming up with a more
general approach to combining the results from multiple textures that all the vendors can agree
on. Rather than argue, the vendors agreed to specify the initial simplistic pipeline model found in
the current multitexture specification and hopefully find common ground in a future extension
once multitexture hardware design was better understood.

NVIDIA has proposed its NVIDIA_multitexture_combiners extension in expectation of the
flexible texture combining hardware found in NVIDIA’s RIVA TNT graphics processor. Clever
OpenGL programmers can use NVIDIA’s combiner extension to implement sophisticated texture-
based lighting models including bump mapping.

Appendix E is the preliminary NVIDIA_multitexture_combiners specification.

The Secondary Color Extension
When texturing and lighting are both enabled, OpenGL performs per-vertex lighting calculations
that are then combined with the filtered texture result based on the texture environment. Before
OpenGL 1.2 introduced the ideal of a separate specular color, OpenGL, as originally specified,
computed the post-lighting per-vertex color by simply adding in the specular contribution as part
of the per-vertex lighting equation. The unfortunate result with this approach is that the specular
lighting contribution is typically modulated with the texture color. This means a bright specular
highlight can wind up blended into a dark surface texture. A bright specular highlight on a surface
appears “on top of” the surface texture. This is not very realistic. A more plausible lighting
equation would add the specular contribution after the texture environment. Think about a
specular highlight on an eight ball on a pool table. Even though the ball’s surface texture is black,
the highlight should still appear white.

OpenGL 1.2 provides for a primary color and a secondary color. When both lighting and
OpenGL 1.2’s new GL_SEPARATE_SPECULAR_COLOR state are enabled, the primary color is the
result of the OpenGL’s lighting equation excluding the specular contribution while the secondary
color is the equation’s specular contribution. Otherwise the secondary color is zero. The primary
color is merged in the texture environment, and then the secondary color is added to the texture
environment result. By adding the specular contribution after the texture environment, specular
highlights appear “on top of” the surface texture.

OpenGL 1.2 added support for a secondary color, but the secondary color is only updated
through OpenGL’s lighting equations. The application programmer cannot directly assign the

NVIDIA Corporation Advanced OpenGL Development

12

specular color. Programmers who implement their own per-vertex lighting calculations (a
common requirement in game engines) have no easy way in the OpenGL 1.2 specification to
supply their own pre-computed per-vertex specular color. The secondary color extension adds
the capability to directly specify the secondary color on a per-vertex basis.

Appendix F is the EXT_secondary_color specification.

The Fog Coordinate Extension
OpenGL specifies that fogging should be computed based on eye distance but also allows
implementations to use the fragment’s depth as an approximation of eye distance. The fog
coordinate extension allows OpenGL applications to substitute OpenGL’s eye distance (or depth
based approximation of eye distance) with an explicitly specified fog coordinate. The fog
coordinate is a single coordinate that can be specified per-vertex. Game programmers often like
to specify the fog coordinate explicitly, either because they want better control of the fog equation
or they intend to use the hardware’s fog stage for some other devious purpose.

Support for an application settable per-vertex secondary color and fog coordinate are responses
from feedback from game developers. Because Direct3D Immediate Mode supported explicit
control of these rasterization parameters and therefore hardware designed for Direct3D already
had the fundamental support for specifying these parameters on a per-vertex basis, it made
sense to expose explicit control of these rasterization parameters through OpenGL extensions.

Both the fog coordinate and the secondary color can be passed both through immediate mode
routines (glSecondaryColor3fEXT and glFogCoordfEXT) as well as through vertex arrays.

Conclusions
OpenGL continues to evolve its support for 3D game and applications programmers. OpenGL’s
extension mechanism provides a way to keep the simplicity of OpenGL’s basic programming
model while integrating innovative hardware capabilities into the API.

Compile-time and run-time checking for OpenGL extension support is necessary for robust
OpenGL programs that use OpenGL extensions. Win32 makes accessing OpenGL extension
functions more difficult because of the requirement to retrieve function pointers with
wglGetProcAddress, but once the function entry-point addresses are retrieved, OpenGL
extensions are easy to use with Win32.

The seven OpenGL extensions described above give OpenGL programmers new capabilities to
control point size on a dynamic basis, to conserve texture memory usage, to utilize cutting-edge
multitexture hardware, and gain explicit control over per-vertex parameters such as the specular
color and fog coordinate.

The key to exploiting OpenGL extensions is reading and understanding the OpenGL extension
specifications. An extension’s specification is the definitive word on how a given extension
should work. Review the seven extension specifications in the appendixes that follow and look
on the Web for the specifications to scores of other available OpenGL extensions.

NVIDIA Corporation Advanced OpenGL Development

13

A. EXT_point_parameters Specification

Name
 EXT_point_parameters

Name Strings
 GL_EXT_point_parameters

Version
 $Date: 1997/08/21 21:26:36 $ $Revision: 1.6 $

Number
 54

Dependencies
 SGIS_multisample affects the definition of this extension.

Overview
 This extension supports additional geometric characteristics of points. It
 can be used to render particles or tiny light sources, commonly referred
 as "Light points".

 The raster brightness of a point is a function of the point area, point
 color, point transparency, and the response of the display's electron gun
 and phosphor. The point area and the point transparency are derived from the
 point size, currently provided with the <size> parameter of glPointSize.

 The primary motivation is to allow the size of a point to be affected by
 distance attenuation. When distance attenuation has an effect, the final
 point size decreases as the distance of the point from the eye increases.

 The secondary motivation is a mean to control the mapping from the point
 size to the raster point area and point transparency. This is done in order
 to increase the dynamic range of the raster brightness of points. In other
 words, the alpha component of a point may be decreased (and its transparency
 increased) as its area shrinks below a defined threshold.

 This extension defines a derived point size to be closely related to point
 brightness. The brightness of a point is given by:

 1
 dist_atten(d) = -------------------
 a + b * d + c * d^2

 brightness(Pe) = Brightness * dist_atten(|Pe|)

 where 'Pe' is the point in eye coordinates, and 'Brightness' is some initial
 value proportional to the square of the size provided with glPointSize. Here
 we simplify the raster brightness to be a function of the rasterized point
 area and point transparency.

 brightness(Pe) brightness(Pe) >= Threshold_Area
 area(Pe) =
 Threshold_Area Otherwise

 factor(Pe) = brightness(Pe)/Threshold_Area

 alpha(Pe) = Alpha * factor(Pe)

 where 'Alpha' comes with the point color (possibly modified by lighting).

 'Threshold_Area' above is in area units. Thus, it is proportional to the
 square of the threshold provided by the programmer through this extension.

 The new point size derivation method applies to all points, while the
 threshold applies to multisample points only.

Issues
 * Does point alpha modification affect the current color ?

NVIDIA Corporation Advanced OpenGL Development

14

 No.

 * Do we need a special function glGetPointParameterfvEXT, or get by with
 glGetFloat ?
 No.

 * If alpha is 0, then we could toss the point before it reaches the
 fragment stage.

 No. This can be achieved with enabling the alpha test with reference of
 0 and function of LEQUAL.

 * Do we need a disable for applying the threshold ? The default threshold
 value is 1.0. It is applied even if the point size is constant.

 If the default threshold is not overridden, the area of multisample
 points with provided constant size of less than 1.0, is mapped to 1.0,
 while the alpha component is modulated accordingly, to compensate for
 the larger area. For multisample points this is not a problem, as there
 are no relevant applications yet. As mentioned above, the threshold does
 not apply to alias or antialias points.

 The alternative is to have a disable of threshold application, and state
 that threshold (if not disabled) applies to non antialias points only
 (that is, alias and multisample points).

 The behavior without an enable/disable looks fine.

 * Future extensions (to the extension)

 1. GL_POINT_FADE_ALPHA_CLAMP_EXT

 When the derived point size is larger than the threshold size defined by
 the GL_POINT_FADE_THRESHOLD_SIZE_EXT parameter, it might be desired to
 clamp the computed alpha to a minimum value, in order to keep the point
 visible. In this case the formula below change:

 factor = (derived_size/threshold)^2

 factor clamp <= factor
 clamped_value =
 clamp factor < clamp

 1.0 derived_size >= threshold
 alpha *=
 clamped_value Otherwise

 where clamp is defined by the GL_POINT_FADE_ALPHA_CLAMP_EXT new parameter.

New Procedures and Functions
 void glPointParameterfEXT (GLenum pname, GLfloat param);
 void glPointParameterfvEXT (GLenum pname, GLfloat *params);

New Tokens
 Accepted by the <pname> parameter of glPointParameterfEXT, and the <pname>
 of glGet:

 GL_POINT_SIZE_MIN_EXT
 GL_POINT_SIZE_MAX_EXT
 GL_POINT_FADE_THRESHOLD_SIZE_EXT

 Accepted by the <pname> parameter of glPointParameterfvEXT, and the <pname>
 of glGet:

 GL_POINT_SIZE_MIN_EXT 0x8126
 GL_POINT_SIZE_MAX_EXT 0x8127
 GL_POINT_FADE_THRESHOLD_SIZE_EXT 0x8128
 GL_DISTANCE_ATTENUATION_EXT 0x8129

Additions to Chapter 2 of the 1.0 Specification (OpenGL Operation)
 None

NVIDIA Corporation Advanced OpenGL Development

15

Additions to Chapter 3 of the 1.0 Specification (Rasterization)
 All parameters of the glPointParameterfEXT and glPointParameterfvEXT
 functions set various values applied to point rendering. The derived point
 size is defined to be the <size> provided with glPointSize modulated with a
 distance attenuation factor.

 The parameters GL_POINT_SIZE_MIN_EXT and GL_POINT_SIZE_MAX_EXT simply
 define an upper and lower bounds respectively on the derived point size.

 The above parameters affect non-multisample points as well as multisample
 points, while the GL_POINT_FADE_THRESHOLD_SIZE_EXT parameter, has no effect
 on non multisample points. If the derived point size is larger than
 the threshold size defined by the GL_POINT_FADE_THRESHOLD_SIZE_EXT
 parameter, the derived point size is used as the diameter of the rasterized
 point, and the alpha component is intact. Otherwise, the threshold size is
 set to be the diameter of the rasterized point, while the alpha component is
 modulated accordingly, to compensate for the larger area.

 The distance attenuation function coefficients, namely a, b, and c in:

 1
 dist_atten(d) = -------------------
 a + b * d + c * d^2

 are defined by the <pname> parameter GL_DISTANCE_ATTENUATION_EXT of the
 function glPointParameterfvEXT. By default a = 1, b = 0, and c = 0.

 Let 'size' be the point size provided with glPointSize, let 'dist' be the
 distance of the point from the eye, and let 'threshold' be the threshold size
 defined by the GL_POINT_FADE_THRESHOLD_SIZE parameter of
 glPointParameterfEXT. The derived point size is given by:

 derived_size = size * sqrt(dist_atten(dist))

 Note that when default values are used, the above formula reduces to:

 derived_size = size

 the diameter of the rasterized point is given by:

 derived_size derived_size >= threshold
 diameter =
 threshold Otherwise

 The alpha of a point is calculated to allow the fading of points instead of
 shrinking them past a defined threshold size. The alpha component of the
 rasterized point is given by:

 1 derived_size >= threshold
 alpha *=
 (derived_size/threshold)^2 Otherwise

 The threshold defined by GL_POINT_FADE_THRESHOLD_SIZE_EXT is not clamped
 to the minimum and maximum point sizes.

 Points do not affect the current color.

 This extension doesn't change the feedback or selection behavior of points.

Additions to Chapter 4 of the 1.0 Specification (Per-Fragment Operations
and the Framebuffer)
 None

Additions to Chapter 5 of the 1.0 Specification (Special Functions)
 None

Additions to Chapter 6 of the 1.0 Specification (State and State Requests)
 None

Additions to the GLX Specification

NVIDIA Corporation Advanced OpenGL Development

16

 None

Dependencies on SGIS_multisample
 If SGIS_multisample is not implemented, then the references to
 multisample points are invalid, and should be ignored.

Errors
 INVALID_ENUM is generated if PointParameterfEXT parameter <pname> is not
 GL_POINT_SIZE_MIN_EXT, GL_POINT_SIZE_MAX_EXT, or
 GL_POINT_FADE_THRESHOLD_SIZE_EXT.

 INVALID_ENUM is generated if PointParameterfvEXT parameter <pname> is
 not GL_POINT_SIZE_MIN_EXT, GL_POINT_SIZE_MAX_EXT,
 GL_POINT_FADE_THRESHOLD_SIZE_EXT, or GL_DISTANCE_ATTENUATION_EXT

 INVALID_VALUE is generated when values are out of range according to:

 <pname> valid range
 -------- -----------
 GL_POINT_SIZE_MIN_EXT >= 0
 GL_POINT_SIZE_MAX_EXT >= 0
 GL_POINT_FADE_THRESHOLD_SIZE_EXT >= 0

 Issues

 - should we generate INVALID_VALUE or just clamp?

New State
 Get Value Get Command Type Initial Value Attribute
 --------- ----------- ---- --------- ---------
 GL_POINT_SIZE_MIN_EXT GetFloatv R 0 point
 GL_POINT_SIZE_MAX_EXT GetFloatv R M point
 GL_POINT_FADE_THRESHOLD_SIZE_EXT GetFloatv R 1 point
 GL_DISTANCE_ATTENUATION_EXT GetFloatv 3xR (1,0,0) point

 M is the largest available point size.

New Implementation Dependent State
 None

Backward Compatibility
 This extension replaces SGIS_point_parameters. The procedures, tokens,
 and name strings now refer to EXT instead of SGIS. Enumerant values are
 unchanged. SGI implementations which previously provided this
 functionality should support both forms of the extension.

NVIDIA Corporation Advanced OpenGL Development

17

B. Paletted Texture Specification

Name
 EXT_paletted_texture

Name Strings
 GL_EXT_paletted_texture

Version
 $Date: 1997/06/12 01:07:42 $ $Revision: 1.2 $

Number
 78

Dependencies

 GL_EXT_paletted_texture shares routines and enumerants with
 GL_SGI_color_table with the minor modification that EXT replaces SGI.
 In all other ways these calls should function in the same manner and the
 enumerant values should be identical. The portions of
 GL_SGI_color_table that are used are:
 ColorTableSGI, GetColorTableSGI, GetColorTableParameterivSGI,
 GetColorTableParameterfvSGI.
 COLOR_TABLE_FORMAT_SGI, COLOR_TABLE_WIDTH_SGI,
 COLOR_TABLE_RED_SIZE_SGI, COLOR_TABLE_GREEN_SIZE_SGI,
 COLOR_TABLE_BLUE_SIZE_SGI, COLOR_TABLE_ALPHA_SIZE_SGI,
 COLOR_TABLE_LUMINANCE_SIZE_SGI, COLOR_TABLE_INTENSITY_SIZE_SGI.

 Portions of GL_SGI_color_table which are not used in
 GL_EXT_paletted_texture are:
 CopyColorTableSGI, ColorTableParameterivSGI,
 ColorTableParameterfvSGI.
 COLOR_TABLE_SGI, POST_CONVOLUTION_COLOR_TABLE_SGI,
 POST_COLOR_MATRIX_COLOR_TABLE_SGI, PROXY_COLOR_TABLE_SGI,
 PROXY_POST_CONVOLUTION_COLOR_TABLE_SGI,
 PROXY_POST_COLOR_MATRIX_COLOR_TABLE_SGI, COLOR_TABLE_SCALE_SGI,
 COLOR_TABLE_BIAS_SGI.

 EXT_paletted_texture can be used in conjunction with EXT_texture3D.
 EXT_paletted_texture modifies TexImage3DEXT to accept paletted image
 data and allows TEXTURE_3D_EXT and PROXY_TEXTURE_3D_EXT to be used a
 targets in the color table routines. If EXT_texture3D is unsupported
 then references to 3D texture support in this spec are invalid and
 should be ignored.

Overview
 EXT_paletted_texture defines new texture formats and new calls to
 support the use of paletted textures in OpenGL. A paletted texture is
 defined by giving both a palette of colors and a set of image data which
 is composed of indices into the palette. The paletted texture cannot
 function properly without both pieces of information so it increases the
 work required to define a texture. This is offset by the fact that the
 overall amount of texture data can be reduced dramatically by factoring
 redundant information out of the logical view of the texture and placing
 it in the palette.

 Paletted textures provide several advantages over full-color textures:

 * As mentioned above, the amount of data required to define a
 texture can be greatly reduced over what would be needed for full-color
 specification. For example, consider a source texture that has only 256
 distinct colors in a 256 by 256 pixel grid. Full-color representation
 requires three bytes per pixel, taking 192K of texture data. By putting
 the distinct colors in a palette only eight bits are required per pixel,
 reducing the 192K to 64K plus 768 bytes for the palette. Now add an
 alpha channel to the texture. The full-color representation increases
 by 64K while the paletted version would only increase by 256 bytes.
 This reduction in space required is particularly important for hardware
 accelerators where texture space is limited.

NVIDIA Corporation Advanced OpenGL Development

18

 * Paletted textures allow easy reuse of texture data for images
 which require many similar but slightly different colored objects.
 Consider a driving simulation with heavy traffic on the road. Many of
 the cars will be similar but with different color schemes. If
 full-color textures are used a separate texture would be needed for each
 color scheme, while paletted textures allow the same basic index data to
 be reused for each car, with a different palette to change the final
 colors.

 * Paletted textures also allow use of all the palette tricks
 developed for paletted displays. Simple animation can be done, along
 with strobing, glowing and other palette-cycling effects. All of these
 techniques can enhance the visual richness of a scene with very little
 data.

New Procedures and Functions
 void ColorTableEXT(
 enum target,
 enum internalFormat,
 sizei width,
 enum format,
 enum type,
 const void *data);

 void ColorSubTableEXT(
 enum target,
 sizei start,
 sizei count,
 enum format,
 enum type,
 const void *data);

 void GetColorTableEXT(
 enum target,
 enum format,
 enum type,
 void *data);

 void GetColorTableParameterivEXT(
 enum target,
 enum pname,
 int *params);

 void GetColorTableParameterfvEXT(
 enum target,
 enum pname,
 float *params);

New Tokens
 Accepted by the internalformat parameter of TexImage1D, TexImage2D and
 TexImage3DEXT:
 COLOR_INDEX1_EXT 0x80E2
 COLOR_INDEX2_EXT 0x80E3
 COLOR_INDEX4_EXT 0x80E4
 COLOR_INDEX8_EXT 0x80E5
 COLOR_INDEX12_EXT 0x80E6
 COLOR_INDEX16_EXT 0x80E7

 Accepted by the pname parameter of GetColorTableParameterivEXT and
 GetColorTableParameterfvEXT:
 COLOR_TABLE_FORMAT_EXT 0x80D8
 COLOR_TABLE_WIDTH_EXT 0x80D9
 COLOR_TABLE_RED_SIZE_EXT 0x80DA
 COLOR_TABLE_GREEN_SIZE_EXT 0x80DB
 COLOR_TABLE_BLUE_SIZE_EXT 0x80DC
 COLOR_TABLE_ALPHA_SIZE_EXT 0x80DD
 COLOR_TABLE_LUMINANCE_SIZE_EXT 0x80DE
 COLOR_TABLE_INTENSITY_SIZE_EXT 0x80DF

 Accepted by the value parameter of GetTexLevelParameter{if}v:

NVIDIA Corporation Advanced OpenGL Development

19

 TEXTURE_INDEX_SIZE_EXT 0x80ED

Additions to Chapter 2 of the GL Specification (OpenGL Operation)
None

Additions to Chapter 3 of the GL Specification (Rasterization)

 Section 3.6.4, 'Pixel Transfer Operations,' subsection 'Color Index
 Lookup,'

 Point two is modified from 'The groups will be loaded as an
 image into texture memory' to 'The groups will be loaded as an image
 into texture memory and the internalformat parameter is not one of the
 color index formats from table 3.8.'

 Section 3.8, 'Texturing,' subsection 'Texture Image Specification' is
 modified as follows:

 The portion of the first paragraph discussing interpretation of format,
 type and data is split from the portion discussing target, width and
 height. The target, width and height section now ends with the sentence
 'Arguments width and height specify the image's width and height.'

 The format, type and data section is moved under a subheader 'Direct
 Color Texture Formats' and begins with 'If internalformat is not one of
 the color index formats from table 3.8,' and continues with the existing
 text through the internalformat discussion.

 After that section, a new section 'Paletted Texture Formats' has the
 text:
 If format is given as COLOR_INDEX then the image data is
 composed of integer values representing indices into a table of colors
 rather than colors themselves. If internalformat is given as one of the
 color index formats from table 3.8 then the texture will be stored
 internally as indices rather than undergoing index-to-RGBA mapping as
 would previously have occurred. In this case the only valid values for
 type are BYTE, UNSIGNED_BYTE, SHORT, UNSIGNED_SHORT, INT and
 UNSIGNED_INT.

 The image data is unpacked from memory exactly as for a
 DrawPixels command with format of COLOR_INDEX for a context in color
 index mode. The data is then stored in an internal format derived from
 internalformat. In this case the only legal values of internalformat
 are COLOR_INDEX1_EXT, COLOR_INDEX2_EXT, COLOR_INDEX4_EXT,
 COLOR_INDEX8_EXT, COLOR_INDEX12_EXT and COLOR_INDEX16_EXT and the
 internal component resolution is picked according to the index
 resolution specified by internalformat. Any excess precision in the
 data is silently truncated to fit in the internal component precision.

 An application can determine whether a particular
 implementation supports a particular paletted format (or any paletted
 formats at all) by attempting to use the paletted format with a proxy
 target. TEXTURE_INDEX_SIZE_EXT will be zero if the implementation
 cannot support the texture as given.

 An application can determine an implementation's desired
 format for a particular paletted texture by making a TexImage call with
 COLOR_INDEX as the internalformat, in which case target must be a proxy
 target. After the call the application can query
 TEXTURE_INTERNAL_FORMAT to determine what internal format the
 implementation suggests for the texture image parameters.
 TEXTURE_INDEX_SIZE_EXT can be queried after such a call to determine the
 suggested index resolution numerically. The index resolution suggested
 by the implementation does not have to be as large as the input data
 precision. The resolution may also be zero if the implementation is
 unable to support any paletted format for the given texture image.

 Table 3.8 should be augmented with a column titled 'Index bits.' All
 existing formats have zero index bits. The following formats are added
 with zeroes in all existing columns:
 Name Index bits

NVIDIA Corporation Advanced OpenGL Development

20

 COLOR_INDEX1_EXT 1
 COLOR_INDEX2_EXT 2
 COLOR_INDEX4_EXT 4
 COLOR_INDEX8_EXT 8
 COLOR_INDEX12_EXT 12
 COLOR_INDEX16_EXT 16

 At the end of the discussion of level the following text should be
 added:

 All mipmapping levels share the same palette. If levels
 are created with different precision indices then their internal formats
 will not match and the texture will be inconsistent, as discussed above.

 In the discussion of internalformat for CopyTexImage{12}D, at end of the
 sentence specifying that 1, 2, 3 and 4 are illegal there should also be
 a mention that paletted internalformat values are illegal.

 At the end of the width, height, format, type and data section under
 TexSubImage there should be an additional sentence:

 If the target texture has an color index internal format
 then format may only be COLOR_INDEX.

 At the end of the first paragraph describing TexSubImage and
 CopyTexSubImage the following sentence should be added:

 If the target of a CopyTexSubImage is a paletted texture
 image then INVALID_OPERATION is returned.

 After the Alternate Image Specification Commands section, a new 'Palette
 Specification Commands' section should be added.

 Paletted textures require palette information to
 translate indices into full colors. The command
 void ColorTableEXT(enum target, enum internalformat, sizei width,
 enum format, enum type, const void *data);
 is used to specify the format and size of the palette
 for paletted textures. target specifies which texture is to have its
 palette changed and may be one of TEXTURE_1D, TEXTURE_2D,
 PROXY_TEXTURE_1D, PROXY_TEXTURE_2D, TEXTURE_3D_EXT or
 PROXY_TEXTURE_3D_EXT. internalformat specifies the desired format and
 resolution of the palette when in its internal form. internalformat can
 be any of the non-index values legal for TexImage internalformat
 although implementations are not required to support palettes of all
 possible formats. width controls the size of the palette and must be a
 power of two greater than or equal to one. format and type specify the
 number of components and type of the data given by data. format can be
 any of the formats legal for DrawPixels although implementations are not
 required to support all possible formats. type can be any of the types
 legal for DrawPixels except GL_BITMAP.

 Data is taken from memory and converted just as if each
 palette entry were a single pixel of a 1D texture. Pixel unpacking and
 transfer modes apply just as with texture data. After unpacking and
 conversion the data is translated into a internal format that matches
 the given format as closely as possible. An implementation does not,
 however, have a responsibility to support more than one precision for
 the base formats.

 If the palette's width is greater than the range of
 the color indices in the texture data then some of the palettes entries
 will be unused. If the palette's width is less than the range of the
 color indices in the texture data then the most-significant bits of the
 texture data are ignored and only the appropriate number of bits of the
 index are used when accessing the palette.

 Specifying a proxy target causes the proxy texture's
 palette to be resized and its parameters set but no data is transferred
 or accessed. If an implementation cannot handle the palette data given
 in the call then the color table width and component resolutions are set

NVIDIA Corporation Advanced OpenGL Development

21

 to zero.

 Portions of the current palette can be replaced with
 void ColorSubTableEXT(enum target, sizei start, sizei count,
 enum format, enum type, const void *data);
 target can be any of the non-proxy values legal for
 ColorTableEXT. start and count control which entries of the palette are
 changed out of the range allowed by the internal format used for the
 palette indices. count is silently clamped so that all modified entries
 all within the legal range. format and type can be any of the values
 legal for ColorTableEXT. The data is treated as a 1D texture just as in
 ColorTableEXT.

 In the 'Texture State and Proxy State' section the sentence fragment
 beginning 'six integer values describing the resolutions...' should be
 changed to refer to seven integer values, with the seventh being the
 index resolution.

 Palette data should be added in as a third category of texture state.

 After the discussion of properties, the following should be added:

 Next there is the texture palette. All textures have a
 palette, even if their internal format is not color index. A texture's
 palette is initially one RGBA element with all four components set to
 1.0.

 The sentence mentioning that proxies do not have image data or
 properties should be extended with 'or palettes.'

 The sentence beginning 'If the texture array is too large' describing
 the effects of proxy failure should change to read:

 If the implementation is unable to handle the texture
 image data the proxy width, height, border width and component
 resolutions are set to zero. This situation can occur when the texture
 array is too large or an unsupported paletted format was requested.

Additions to Chapter 4 of the GL Specification (Per-Fragment Operations
and the Framebuffer)
 None

Additions to Chapter 5 of the GL Specification (Special Functions)
 None

Additions to Chapter 6 of the GL Specification (State and State
Requests)

 In the section on GetTexImage, the sentence saying 'The components are
 assigned among R, G, B and A according to' should be changed to be

 If the internal format of the texture is not a color
 index format then the components are assigned among R, G, B, and A
 according to Table 6.1. Specifying COLOR_INDEX for format in this case
 will generate the error INVALID_ENUM. If the internal format of the
 texture is color index then the components are handled in one of two
 ways depending on the value of format. If format is not COLOR_INDEX,
 the texture's indices are passed through the texture's palette and the
 resulting components are assigned among R, G, B, and A according to
 Table 6.1. If format is COLOR_INDEX then the data is treated as single
 components and the palette indices are returned. Components are taken
 starting...

 Following the GetTexImage section there should be a new section:

 GetColorTableEXT is used to get the current texture
 palette.
 void GetColorTableEXT(enum target, enum format, enum type, void *data);

 GetColorTableEXT retrieves the texture palette of the
 texture given by target. target can be any of the non-proxy targets

NVIDIA Corporation Advanced OpenGL Development

22

 valid for ColorTableEXT. format and type are interpreted just as for
 ColorTableEXT. All textures have a palette by default so
 GetColorTableEXT will always be able to return data even if the internal
 format of the texture is not a color index format.

 Palette parameters can be retrieved using
 void GetColorTableParameterivEXT(enum target, enum pname, int *params);
 void GetColorTableParameterfvEXT(enum target, enum pname, float *params);
 target specifies the texture being queried and pname
 controls which parameter value is returned. Data is returned in the
 memory pointed to by params.

 Querying COLOR_TABLE_FORMAT_EXT returns the internal
 format requested by the most recent ColorTableEXT call or the default.
 COLOR_TABLE_WIDTH_EXT returns the width of the current palette.
 COLOR_TABLE_RED_SIZE_EXT, COLOR_TABLE_GREEN_SIZE_EXT,
 COLOR_TABLE_BLUE_SIZE_EXT and COLOR_TABLE_ALPHA_SIZE_EXT return the
 actual size of the components used to store the palette data internally,
 not the size requested when the palette was defined.

 Table 6.11, "Texture Objects" should have a line appended for
 TEXTURE_INDEX_SIZE_EXT:

TEXTURE_INDEX_SIZE_EXT n x Z+ GetTexLevelParameter 0 xD texture image i's index resolution 3.8 -

Revision History

Original draft, revision 0.5, December 20, 1995 (drewb) Created

Minor revisions and clarifications, revision 0.6, January 2, 1996 (drewb)
 Replaced all request-for-comment blocks with final text
 based on implementation.

Minor revisions and clarifications, revision 0.7, February 5, 1996 (drewb)
 Specified the state of the palette color information
 when existing data is replaced by new data.

 Clarified behavior of TexPalette on inconsistent textures.

Major changes due to ARB review, revision 0.8, March 1, 1996 (drewb)
 Switched from using TexPaletteEXT and GetTexPaletteEXT
 to using SGI's ColorTableEXT routines. Added ColorSubTableEXT so
 equivalent functionality is available.

 Allowed proxies in all targets.

 Changed PALETTE?_EXT values to COLOR_INDEX?_EXT. Added
 support for one and two bit palettes. Removed PALETTE_INDEX_EXT in
 favor of COLOR_INDEX.

 Decoupled palette size from texture data type. Palette
 size is controlled only by ColorTableEXT.

Changes due to ARB review, revision 1.0, May 23, 1997 (drewb)
 Mentioned texture3D.

 Defined TEXTURE_INDEX_SIZE_EXT.

 Allowed implementations to return an index size of zero to indicate
 no support for a particular format.

 Allowed usage of GL_COLOR_INDEX as a generic format in
 proxy queries for determining an optimal index size for a particular
 texture.

 Disallowed CopyTexImage and CopyTexSubImage to paletted formats.

 Deleted mention of index transfer operations during GetTexImage with
 paletted formats.

NVIDIA Corporation Advanced OpenGL Development

23

C. Shared Texture Palette

Name
 EXT_shared_texture_palette

Name Strings
 GL_EXT_shared_texture_palette

Version
 $Date: 1997/09/10 23:23:04 $ $Revision: 1.2 $

Number
 141

Dependencies
 EXT_paletted_texture is required.

Overview
 EXT_shared_texture_palette defines a shared texture palette which may be
 used in place of the texture object palettes provided by
 EXT_paletted_texture. This is useful for rapidly changing a palette
 common to many textures, rather than having to reload the new palette
 for each texture. The extension acts as a switch, causing all lookups
 that would normally be done on the texture's palette to instead use the
 shared palette.

Issues
 * Do we want to use a new <target> to ColorTable to specify the
 shared palette, or can we just infer the new target from the
 corresponding Enable?

 * A future extension of larger scope might define a "texture palette
 object" and bind these objects to texture objects dynamically, rather
 than making palettes part of the texture object state as the current
 EXT_paletted_texture spec does.

 * Should there be separate shared palettes for 1D, 2D, and 3D
 textures?

 Probably not; palette lookups have nothing to do with the
 dimensionality of the texture. If multiple shared palettes
 are needed, we should define palette objects.

 * There's no proxy mechanism for checking if a shared palette can
 be defined with the requested parameters. Will it suffice to
 assume that if a texture palette can be defined, so can a shared
 palette with the same parameters?

 * The changes to the spec are based on changes already made for
 EXT_paletted_texture, which means that all three documents must
 be referred to. This is quite difficult to read.

 * The changes to section 3.8.6, defining how shared palettes are
 enabled and disabled, might be better placed in section 3.8.1.
 However, the underlying EXT_paletted_texture does not appear to
 modify these sections to define exactly how palette lookups are
 done, and it's not clear where to put the changes.

New Procedures and Functions
 None

New Tokens
 Accepted by the <pname> parameters of GetBooleanv, GetIntegerv,
 GetFloatv, GetDoublev, IsEnabled, Enable, Disable, ColorTableEXT,
 ColorSubTableEXT, GetColorTableEXT, GetColorTableParameterivEXT, and
 GetColorTableParameterfd EXT:

 SHARED_TEXTURE_PALETTE_EXT 0x81FB

NVIDIA Corporation Advanced OpenGL Development

24

Additions to Chapter 2 of the 1.1 Specification (OpenGL Operation)
 None

Additions to Chapter 3 of the 1.1 Specification (Rasterization)
 Section 3.8, 'Texturing,' subsection 'Texture Image Specification' is
 modified as follows:

 In the Palette Specification Commands section, the sentence
 beginning 'target specifies which texture is to' should be changed
 to:

 target specifies the texture palette or shared palette to be
 changed, and may be one of TEXTURE_1D, TEXTURE_2D,
 PROXY_TEXTURE_1D, PROXY_TEXTURE_2D, TEXTURE_3D_EXT,
 PROXY_TEXTURE_3D_EXT, or SHARED_TEXTURE_PALETTE_EXT.

 In the 'Texture State and Proxy State' section, the sentence
 beginning 'A texture's palette is initially...' should be changed
 to:

 There is also a shared palette not associated with any texture, which
 may override a texture palette. All palettes are initially...

 Section 3.8.6, 'Texture Application' is modified by appending the
 following:

 Use of the shared texture palette is enabled or disabled using the
 generic Enable or Disable commands, respectively, with the symbolic
 constant SHARED_TEXTURE_PALETTE_EXT.

 The required state is one bit indicating whether the shared palette is
 enabled or disabled. In the initial state, the shared palettes is
 disabled.

Additions to Chapter 4 of the 1.1 Specification (Per-Fragment Operations
and the Frame buffer)

Additions to Chapter 5 of the 1.1 Specification (Special Functions)

Additions to Chapter 6 of the 1.1 Specification (State and State Requests)
 In the section on GetTexImage, the sentence beginning 'If format is
 not COLOR_INDEX...' should be changed to:

 If format is not COLOR_INDEX, the texture's indices are passed
 through the texture's palette, or the shared palette if one is
 enabled, and the resulting components are assigned among R, G, B,
 and A according to Table 6.1.

 In the GetColorTable section, the first sentence of the second
 paragraph should be changed to read:

 GetColorTableEXT retrieves the texture palette or shared palette
 given by target.

 The first sentence of the third paragraph should be changed to read:

 Palette parameters can be retrieved using
 void GetColorTableParameterivEXT(enum target, enum pname, int *params);
 void GetColorTableParameterfvEXT(enum target, enum pname, float *params);
 target specifies the texture palette or shared palette being
 queried and pname controls which parameter value is returned.

Additions to the GLX Specification
 None

New State
 Get Value Get Command Type Initial Value Attribute
 --------- ----------- ---- ------------- ---------
 SHARED_TEXTURE_PALETTE_EXT
 IsEnabled B False texture/enable

NVIDIA Corporation Advanced OpenGL Development

25

New Implementation Dependent State
 None

NVIDIA Corporation Advanced OpenGL Development

26

D. Multitexture Specification

XXX – Preliminary

Name
 SGIS_multitexture

Name Strings
 GL_SGIS_multitexture

Version
 $Date: 1998/04/10 06:42:49 $ $Revision: 1.15 $

Number
 116

Dependencies
 OpenGL 1.1 is required
 EXT_texture3D affects the definition of this extension.
 SGIS_texture4D affects the definition of this extension.
 SGIS_texture_border_clamp affects the definition of this extension.
 SGI_texture_color_table affects the definition of this extension.
 SGIS_texture_edge_clamp affects the definition of this extension.
 SGIX_texture_add_env affects the definition of this extension.
 SGIS_texture_filter4 affects the definition of this extension.
 SGIS_texture_lod affects the definition of this extension.
 SGIX_texture_lod_bias affects the definition of this extension.
 SGIX_texture_scale_bias affects the definition of this extension.
 SGIS_texture_select affects the definition of this extension.
 SGIS_detail_texture affects the definition of this extension.
 SGIS_sharpen_texture affects the definition of this extension.
 SGIX_shadow affects the definition of this extension.
 SGIX_shadow_ambient affects the definition of this extension.
 SGIX_clipmap affects the definition of this extension.
 SGIS_point_line_texgen affects the definition of this extension.

Overview
 This extension adds support for multiple active textures. The texture
 capabilities are symmetric for all active textures. Any texture capability
 extension supported for one texture must be supported for all active
 textures. Each active texture has its own state vector which includes
 texture image and filtering parameters and texture environment application.

 The texture environments are applied in a pipelined fashion whereby the
 output of one texture environment is used as the input fragment color for
 the texture environment for the next active texture. Changes to texture
 state other than texture coordinates are routed through a selector which
 controls which instance of texture state is affected.

 +-----+
 Cf ----->| | +-----+ pipelined texture
 | TE0 |--->| | environment
 Ct0 ----->| | | TE1 | +-----+

 +-----+ | |--->| |
 Ct1 ---------------->| | | TE2 | +-----+
 +-----+ | |--->| |
 Ct2 --------------------------->| | | TE3 |
 +-----+ | |--> cf'
 Ct3 -------------------------------------->| |
 +-----+

.

.

.

Ct<i> = texture color from texture lookup <i>
Cf = fragment color
TE = texture environment

 Texture coordinate set, texture coordinate evaluator state, texture

NVIDIA Corporation Advanced OpenGL Development

27

 generation function, and texture matrix are replicated independently of
 the texture rasterization state and may differ in number from the
 number of textures which can be active during rasterization.
 Post-transform texture coordinates sets are associated with a texture
 rasterization unit by binding them to a texture environment and they may
 be multicast to several texture rasterization units.

 The specification is written using four active textures and four
 sets of texture coordinates though the actual number supported is
 implementation dependent and can be larger or smaller than four.

Issues
 * MultiTexCoord is an annoying name

 * alternatives for supplying fine grain texcoord

1. Tex<k>Coord<n><T>[v|f](<T> data);
 a. efficient, no error checking required
 d. adds *a lot* of new commands

2. MultiTexCoord<n><T>[v|f](enum target, <T> data);
 a. only a small number of commands added
 a. can be fairly efficient (may need hw tweak)
 d. needs range checking for <target>

3. reuse TexCoord command and add SelectTextureCoordSetSGIS(enum target)
 to control routing
 a. only add one new commands
 d. adds a lot of function call overhead when using multiple
 textures
 d. need to range check <target>

 * seems a little hacky to have SelectTextureSGIS control texture matrix
 since that is part of transform state and to have it control evaluator
 state yet SELECTED_TEXTURE itself is part of texture state.

 * SelectTextureSGIS probably should not affect client state such as
 the vertex array state.

 it doesn't any more

 * mechanism to replicate input texcoords across multiple texture paths
 could be done with a pre-transform multicast or post-transform
 multicast.

done using TEXTURE_ENV_COORD_SET_SGIS texture parameter
which is a post-transform mechanism.

 RESOLVED: leave the coord source binding separate from
 the texture object state => needs a new command to set it.

 * need proxy/macro object to handle resource constraints
save for another extension?

 * still need a way to route textures to lighting block :(

defined in light_texture.spec

 * should there be a post-filter colortable per texture?

 * should the number of textures and the number of texture
 coordinate paths be decoupled?

RESOLVED: yes
There are some issues with this. We choose to break
texture state into 3 pieces:
 1. client state deal with issuing texture coordinates
 from the application
 2. transform state which includes texgen, texture
 matrix, evaluation maps, and texture coordinate
 retrieval from Gets and Feedback.
 3. rasterization state which includes texture

NVIDIA Corporation Advanced OpenGL Development

28

 images, filter parameters and environment.
2 & 3 are both server state. there is an implication
that 1 and 2 are a little more tightly coupled and
equal in number but we need to keep the client
state separate.
There is some clumsiness with referring to the 2nd
group of state as transform state. There is a problem
that the texgen state is part of the texture state
used in PushAttrib and PopAttrib so some finessing
is required.

 * special treatment of name 0?
RESOLVED: no

 * more texture environment functions, SUBTRACT, ...?
leading candidates are SUBTRACT and REVERSE_SUBTRACT
could also make a new version of environment which is
similar to blending.
RESOLVED: new environment, see texture_env.spec

 * more general combination of texture results?
RESOLVED: do them in add-on specs

 * allow texture environment computation to do something
 even when texture is disabled. This contradicts the current
 specification of texturing (the difference would show
 up in the REPLACE environment), so we redefine this
 behavior in a new environment (see texture_env.spec)

 * support for interleaved arrays

 add a command which acts as a multiplier on the current
 interleaved array token causing the texture coordinate
 array to have <n> contiguous texture coords of the same
 type and format.

 * some clarifications:

 SelectTextureCoordSetSGIS affects client state only and
 affects the commands TexCoord<n>{T}[v], TexCoordPointer,
 EnableClientState, and DisableClientState. Display lists
 contain texture coordinates for which the binding is fully
 resolved to one of TEXTURE0_SGIS .. TEXTURE<n>_SGIS.

 I chose to remove MultiTexCoordPointerSGIS as it was difficult
 to also include tokens which would make it possible to call
 Enable/DisableClientState with a token corresponding to the
 appropriate texture coordinate set, so SelectTextureCoordSetSGIS
 is required to manipulate the array state. To maintain symmetry,
 I made all commands use SelectTextureCoordSetSGIS and the
 MultiTexCoord<n>{T}[v]SGIS commands are added to help with
 performance. An alternative would be to have both
 MultiTexCoordPointerSGIS and add new tokens
 TEXTURE_COORD_ARRAY0_SGIS .. TEXTURE_COORD_ARRAY<n>_SGIS and
 not give TEXTURE_COORD_ARRAY0_SGIS the same value as
 TEXTURE_COORD_ARRAY, so that we can have the relationship
 TEXTURE_COORD_ARRAY<i>_SGIS = TEXTURE_COORD_ARRAY0+SGIS+i.
 This still might cause some confusion/asymmetry if the <target>
 parameter of MultiTexCoordPointerSGIS/MultiTexCoord<n>{T}[v]SGIS
 is TEXTURE0_SGIS .. TEXTURE<n>_SGIS but EnableClientState/
 DisableClientState use TEXTURE_COORD_ARRAY0_SGIS ..
 TEXTURE_COORD_ARRAY<n>_SGIS

New Procedures and Functions
 void MultiTexCoord1dSGIS(enum target, double s);
 void MultiTexCoord1dvSGIS(enum target, const double *v);
 void MultiTexCoord1fSGIS(enum target, float s);
 void MultiTexCoord1fvSGIS(enum target, const float *v);
 void MultiTexCoord1iSGIS(enum target, int s);
 void MultiTexCoord1ivSGIS(enum target, const int *v);
 void MultiTexCoord1sSGIS(enum target, short s);

NVIDIA Corporation Advanced OpenGL Development

29

 void MultiTexCoord1svSGIS(enum target, const short *v);
 void MultiTexCoord2dSGIS(enum target, double s, double t);
 void MultiTexCoord2dvSGIS(enum target, const double *v);
 void MultiTexCoord2fSGIS(enum target, float s, float t);
 void MultiTexCoord2fvSGIS(enum target, const float *v);
 void MultiTexCoord2iSGIS(enum target, int s, int t);
 void MultiTexCoord2ivSGIS(enum target, const int *v);
 void MultiTexCoord2sSGIS(enum target, short s, short t);
 void MultiTexCoord2svSGIS(enum target, const short *v);
 void MultiTexCoord3dSGIS(enum target, double s, double t, double r);
 void MultiTexCoord3dvSGIS(enum target, const double *v);
 void MultiTexCoord3fSGIS(enum target, float s, float t, float r);
 void MultiTexCoord3fvSGIS(enum target, const float *v);
 void MultiTexCoord3iSGIS(enum target, int s, int t, int r);
 void MultiTexCoord3ivSGIS(enum target, const int *v);
 void MultiTexCoord3sSGIS(enum target, short s, short t, short r);
 void MultiTexCoord3svSGIS(enum target, const short *v);
 void MultiTexCoord4dSGIS(enum target, double s, double t, double r, double q);
 void MultiTexCoord4dvSGIS(enum target, const double *v);
 void MultiTexCoord4fSGIS(enum target, float s, float t, float r, float q);
 void MultiTexCoord4fvSGIS(enum target, const float *v);
 void MultiTexCoord4iSGIS(enum target, int s, int t, int r, int q);
 void MultiTexCoord4ivSGIS(enum target, const int *v);
 void MultiTexCoord4sSGIS(enum target, short s, short t, short r, short q);
 void MultiTexCoord4svSGIS(enum target, const short *v);
 void InterleavedTextureCoordSetsSGIS(int factor);
 void SelectTextureSGIS(enum target);
 void SelectTextureCoordSetSGIS(enum target);
 void SelectTextureTransformSGIS(enum target);

New Tokens
 Accepted by the <pname> parameters of GetBooleanv, GetIntegerv,
 GetFloatv, and GetDoublev:

 SELECTED_TEXTURE_SGIS 0x83C0
 SELECTED_TEXTURE_COORD_SET_SGIS 0x83C1
 SELECTED_TEXTURE_TRANSFORM_SGIS 0x83C2
 MAX_TEXTURES_SGIS 0x83C3
 MAX_TEXTURE_COORD_SETS_SGIS 0x83C4

 Accepted by the <pname> parameter of TexEnvi, TexEnvf,
 TexEnviv, TexEnvfv, GetTexEnviv, and GetTexEnvfv:

 TEXTURE_ENV_COORD_SET_SGIS 0x83C5

 Accepted by the <target> parameter of SelectTextureSGIS,
 SelectTextureTransformSGIS, SelectTextureCoordSetSGIS,
 MultiTexCoord<n>{T}[v]SGIS, and the <param> of TexParameteri and
 TexParameterf, and the <params> parameter of TexParameteriv, and
 TexParameterfv:

 TEXTURE0_SGIS 0x83C6
 TEXTURE1_SGIS 0x83C7
 TEXTURE2_SGIS 0x83C8
 TEXTURE3_SGIS 0x83C9
 <reserve enums for 32>

Additions to Chapter 2 of the 1.1 Specification (OpenGL Operation)
 Section 2.6 Begin/End Paradigm
 <amend paragraph 2 & 3>
 Each vertex is specified with two, three, or four coordinates. In
 addition, a current normal, current texture coordinate set, and current
 color may be used in processing each vertex. Normals are used by the GL in
 lighting calculations; the current normal is a three-dimensional vector
 that may be set by sending three coordinates that specify it. Texture
 coordinates determine how a texture image is mapped onto a primitive.
 Multiple sets of texture coordinates may be used to specify how multiple
 texture images are mapped onto a primitive. The number of texture
 coordinate sets supported is implementation dependent but must be at least
 one.

NVIDIA Corporation Advanced OpenGL Development

30

 A color is associated with each vertex as it is specified. This associated
 color is either the current color or a color produced by lighting
 depending on whether or not lighting is enabled. Texture coordinates are
 similarly associated with each vertex. Multiple sets of texture coordinates
 may be associated with a vertex. Figure 2.2 summarizes the association of
 auxiliary data with a transformed vertex to produce a processed vertex.

 <amend figure 2.2 to include multiple texcoord processing blocks
 (current texcoords, texgen, texture matrix)>

 <amend paragraph 6>
 Before a color has been assigned to a vertex, the state required by a vertex
 is the vertex's coordinates, the current normal, and the current texture
 coordinate sets. Once color has been assigned, however, the current normal
 is no longer needed. Because color assignment is done vertex-by-vertex, a
 processed vertex comprises the vertex's coordinates, its assigned color,
 and its texture coordinate sets.

 Section 2.7 Vertex Specifications <texture coordinates>
 <amend paragraph 2>

 Current values are used in associating auxiliary data with a vertex
 as described in section 2.6. A current value may be changed at any time
 by issuing an appropriate command. The commands

 void TexCoord{1234}{sifd}SGIS(T coords);
 void TexCoord{1234}{sifd}vSGIS(T coords);

 specify the current homogeneous texture coordinates, named s,t,r, and q.
 The TexCoord1 family of commands set the s coordinate to the provided
 single argument while setting t and r to 0 and q to 1. Similarly,
 TexCoord2 sets s and t to the specified values, r to 0, and q to 1;
 TexCoord3 sets s, t, and r, with q set to 1, and TexCoord4 sets all four
 texture coordinates.

 Implementations may support more than 1 set of texture
 coordinates. The MultiTexCoord family of commands takes the
 coordinate set to be modified as the <target> parameter. The
 <target> parameter is one of TEXTURE0_SGIS through
 TEXTURE3_SGIS. If a <target> parameter greater than the number of
 supported coordinate sets is specified, the command has no effect.
 The command

 void SelectTextureCoordSetSGIS(enum target);

 is used to change the texture coordinate set modified by the TexCoord*
 family of commands. <target> is one of TEXTURE0_SGIS through TEXTURE3_SGIS
 corresponding to the texture coordinate set to be modified by the TexCoord
 commands. The current coordinate set selection is part of client state rather
 than server state.

 Section 2.8 Vertex Arrays
 <amend paragraph 1>
 The vertex specification commands in section 2.7 accept data in almost any
 format, but their use requires many command executions to specify even
 simple geometry. Vertex data may also be placed in arrays that are stored
 in the client's address space. Blocks of data in these arrays may be used
 to specify multiple geometric primitives through the execution of a single
 GL command. The client may specify 6 or more arrays at once: one each to
 store vertex coordinates, edge flags, colors, color indices, normals and
 one or more texture coordinate sets. The commands

 void EdgeFlagPointer(sizei stride, void *pointer);
 void VertexPointer(int size, enum type, sizei stride, void *pointer);
 void ColorPointer(int size, enum type, sizei stride, void *pointer);
 void IndexPointer(enum type, sizei stride, void *pointer);
 void NormalPointer(enum type, sizei stride, void *pointer);
 void TexCoordPointer(int size, enum type, sizei stride, void *pointer);

 ...

NVIDIA Corporation Advanced OpenGL Development

31

 <insert this paragraph> between paragraph 2 & 3>

 In implementations which support more than one set of texture coordinates,
 the command SelectTextureCoordSetSGIS is used to select the vertex array
 parameters to be modified by the TexCoordPointer command and the array
 affected by client state enable and disable commands with the
 TEXTURE_COORD_ARRAY parameter.

 <modify the section on interleaved arrays as follows>

The commands

void InterleavedArrays(enum format, sizei stride,
 void *pointer) ;

void InterleavedTextureCoordSetsSGIS(int factor) ;

 efficiently initializes the six arrays and their enables to one of 14
 configurations. <format> must be one 14 symbolic constants: V2F, V3F,
 C4UB_V2F, C4UB_V3F, C3F_V3F, N3F_V3F, C4F_N3F_V3F, T2F_V3F, T4F_V4F,
 T2F_C4UB_V3F, T2F_C3F_V3F, T2F_N3F_V3F, T2F_C4F_N3F_V3F, T4F_C4F_N3F_V4F.
 <factor> is an integer between 1 and SELECTED_TEXTURE_COORD_SET_SGIS
 and specifies how many texture coordinate sets are enabled as part
 of the InterleavedArrays command.

The effect of

 InterleavedArrays(format, stride, pointer);
 InterleavedTextureCoordSetsSGIS(factor);

 is the same as the effect of the command sequence

 <copy command sequence from 1.1 spec, but change the part dealing
 with texture coords to>

 GetIntegerv(SELECTED_TEXTURE_COORD_SET_SGIS, &x);
 if (<et>) {

for(i = 0; i < factor; i++) {
 SelectTextureCoordSetSGIS(TEXTURE0_SGIS+i);
 EnableClientState(TEXTURE_COORD_ARRAY);
 TexCoordPointer(st, FLOAT, str, <pointer>+i*pc);
}
for(i = factor; i < MAX_TEXTURE_COORD_SETS_SGIS; i++) {
 SelectTextureCoordSetSGIS(TEXTURE0_SGIS+i);
 DisableClientState(TEXTURE_COORD_ARRAY);
}

 } else {
for(i = 0; i < MAX_TEXTURE_COORD_SETS_SGIS; i++) {
 SelectTextureCoordSetSGIS(TEXTURE0_SGIS+i);
 DisableClientState(TEXTURE_COORD_ARRAY);
}

 }
 SelectTextureCoordSetSGIS(x);
 pc *= factor;

 If the number of supported is texture coordinate sets,
 MAX_TEXTURE_COORD_SETS_SGIS, is <k>, then the client state require to
 implement vertex arrays consists of five plus <k> boolean values, five
 plus <k> integer stride values, four plus <k> constants representing array
 types, and three plus <k> integers representing values per element. In the
 initial state, the boolean values are each disabled, the memory pointers
 are each null, the strides are each zero, the array types are each FLOAT,
 and the integers representing values per element are each four.

 Section 2.10.2 Matrices
 <amend paragraph 8 texture matrix>
 There is another 4x4 matrix that is applied to texture coordinates.
 This matrix is applied as

| m1 m5 m9 m13 | |s|

NVIDIA Corporation Advanced OpenGL Development

32

| m2 m6 m10 m14 | |t| ,
| m3 m7 m11 m15 | |q|
| m4 m8 m12 m16 | |r|

 where the left matrix is the current texture matrix. The Matrix is applied
 to the coordinates resulting from texture coordinate generation which
 (which may simply be the current texture coordinates), and the resulting
 transformed coordinates become the texture coordinates associated with a
 vertex. Setting the matrix mode to TEXTURE causes the already described
 matrix operations to apply to the texture matrix stack.

 For implementations which support more than one set of texture coordinates,
 there is a corresponding texture matrix for each coordinate set. Each stack
 has the same depth. The texture matrix which is affected by the matrix
 operations is set using the SelectTextureTransformSGIS command.

 There is a stack of matrices for each of the matrix modes. For MODELVIEW
 mode, the stack depth is at least 32 (that is, there is a stack of at least
 32 model-view matrices). For other modes, the depth is at least 2. Texture
 matrix stacks for all texture coordinate sets have the same depth.

void PushMatrix(void);

 pushes the stack down by one, duplicating the current matrix in both the
 top of the stack and the entry below it.

void PopMatrix(void);

 pops the top entry off of the stack, replacing the current matrix with the
 matrix that was the second entry in the stack. The pushing or popping
 takes place on the stack corresponding to the current matrix mode. Popping
 a matrix off a stack with only one entry generates the error STACK_UNDERFLOW;
 pushing a matrix onto a full stack generates STACK_OVERFLOW.

 When the current matrix mode is TEXTURE, the texture matrix stack corresponding
 to the currently selected textured is pushed or popped.

 The state required to implement transformations consists of a three-value
 integer indicating the current matrix mode, a stack of at least two 4x4
 matrices for PROJECTION and one stack of at least two 4x4 matrices for
 each set of texture coordinates, TEXTURE, as well as associated stack pointers,
 and a stack of at least 32 4x4 matrices with an associated stack pointer for
 MODELVIEW. Initially, there is only one matrix on each stack and all
 matrices are set to the identity. The initial matrix mode is MODELVIEW.

 Section 2.10.4 Generating texture coordinates
 <amend paragraph 4>
 The state required for texture coordinate generation for each set of
 texture coordinates supported by the implementation comprises a
 three-valued integer for each coordinate indicating coordinate generation
 mode, and a bit for each coordinate to indicate whether texture coordinate
 generation is enabled or disabled. In addition, four coefficients are
 required for the four coordinates for each of EYE_LINEAR and
 OBJECT_LINEAR. The initial state has the texture generation function
 disabled for all texture coordinates. The initial values of p_i for s
 except p_1 which is one; for t all the p_i are zero except p_2, which is
 1. The values of p_i for r and q are all zero. These values of p_i apply
 for both the EYE_LINEAR and OBJECT_LINEAR versions. Initially all texture
 generation modes are EYE_LINEAR.

 Section 2.12 Current Raster Position

 <amend paragraph 2>

 The current raster position consists of three window coordinates x_w,
 y_w, and z_w, a clip coordinate w_c value, and eye coordinate distance,
 a valid bit, and associated data consisting op a color and texture
 coordinate sets. It is set using one of the RasterPos commands:
 ...

 <amend paragraph 5>

NVIDIA Corporation Advanced OpenGL Development

33

 The current raster position requires five single-precision floating-point
 values for its x_w, y_w, and z_w window coordinates, its w_c clip
 coordinate, and its eye coordinate distance, a single valid bit, a color
 (RGBA and color index), and texture coordinates for each set of texture
 coordinates supported by the implementation. In the initial state, the
 coordinates and texture coordinates and both (0,0,0,1), the eye coordinate
 distance is 0, the valid bit is set, the associated RGBA color is (1,1,1,1)
 and the associated color index is 1. In RGBA mode, the associated color
 index always has its initial value; in color index mode, the RGBA color
 always maintains its initial value.

Additions to Chapter 3 of the 1.1 Specification (Rasterization)
 Section 3.8 Texturing
 <amend paragraphs 1 & 2>
 Texturing maps a portion of one or more specified images onto each
 primitive for which texturing is enabled. This mapping is accomplished by
 using the color of an image at the location indicated by a fragment's
 (s,t,r) coordinates to modify the fragment's RGBA color (r is currently
 ignored). An implementation may support texturing using more than one
 image at a time. In this case the fragment carries multiple sets of
 texture coordinates (s,t,r) which are used to index separate images to
 produce color values which are collectively used to modify the fragment's
 RGBA color. Texturing is specified only for RGBA mode; its use in color
 index mode is undefined. The following subsections (up to and including
 Section 3.8.5) specify the GL operation with a single texture and Section
 3.8.6 specifies the details of how multiple textures interact.

 The GL provides a means to specify the details of how texturing of a
 primitive is effected. These details include specifications of the image to
 be texture mapped, the means by which the image is filtered when applied to
 the primitive, and the function that determines what RGBA value is produced
 given a fragment color and an image value.

 Section 3.8.4 Texture Objects
 <add this paragraph to the end of the section>
 The texture object name space is shared amongst all textures in multiple
 texture implementations. A texture object may be bound to more than one
 texture target simultaneously, though they must all be of the same type
 (e.g., TEXTURE_1D, TEXTURE_2D). After a texture object is bound, any GL
 operations on that target also affect any other target to which the same
 texture object is bound.

 Section 3.8.5 Texture Environments and Texture Functions
 <amend the second half of paragraph 1>
 The possible environment parameters are TEXTURE_ENV_MODE,
 TEXTURE_ENV_COLOR, and TEXTURE_ENV_COORD_SET_SGIS. TEXTURE_ENV_MODE may be
 set to one of REPLACE, MODULATE, DECAL, or BLEND; TEXTURE_ENV_COLOR is set
 to an RGBA color by providing four single-precision floating-point values
 in the range [0,1](values outside this range are clamped to it). If
 integers are provided for TEXTURE_ENV_COLOR, then they are converted to
 floating-point as specified in Table 2.6 for signed integers.
 TEXTURE_ENV_COORD_SET_SGIS may be set to one of TEXTURE0_SGIS ..
 TEXTURE<n>_SGIS where <n> is the one less than the number of supported
 texture coordinate sets.

 <insert before paragraph 3>

 The value of TEXTURE_ENV_COORD_SET_SGIS specifies which set of fragment
 texture coordinates are used to determine the texture value used in
 the texture function. The same set of texture coordinates may
 be simultaneously used by multiple textures.

 <replace paragraph 3>

 The state required for the current texture environment consists of the
 four-valued integer indicating the texture function, four floating-
 point TEXTURE_ENV_COLOR values, and one MAX_TEXTURE_COORD_SETS_SGIS-valued
 integer indicating the texture coordinate set binding. In the initial
 state, the texture function is given by MODULATE, TEXTURE_ENV_COLOR is

NVIDIA Corporation Advanced OpenGL Development

34

 (0,0,0,0), and texture coordinate set is TEXTURE0_SGIS.

 Section 3.8.6 Texture Application <replace with this>

 Texturing is enabled or disabled using the generic Enable and Disable
 commands, respectively, with the symbolic constant TEXTURE_1D or TEXTURE_2D
 to enable the one-dimensional or two-dimensional texture, respectively. If
 both the one- and two-dimensional textures are enabled, the two-dimensional
 texture is used. If all texturing is disabled, a rasterized fragment is
 passed unaltered to the next stage of the GL (although its texture
 coordinates may be discarded). Otherwise, a texture value is found
 according to the parameter values of the currently bound texture image of
 the appropriate dimensionality using the rules given in sections 3.8.1 and
 3.8.2. This texture value is used along with the incoming fragment in
 computing the texture function indicated by the currently bound texture
 environment. The result of this function replaces the incoming fragment's
 R, G, B, and A values. These are the color values passed to subsequent
 operations. Other data associated with the incoming fragment remain
 unchanged, except that the texture coordinates may be discarded.

 When multiple textures are supported, additional textures are each paired
 with an environment function. The second texture function is computed
 using the texture value from the second texture, the fragment resulting
 from the first texture function computation and the environment function
 currently bound to the second texture. If there is a third texture, the
 fragment resulting from the second texture function is combined with the
 third texture value using the environment function bound to the third
 texture and so on. Texturing is enabled and disabled individually for each
 texture. If texturing is disabled for one of the textures, then the
 fragment result from the previous stage is passed unaltered to the next
 stage.

Additions to Chapter 4 of the 1.1 Specification (Per-Fragment Operations
and the Framebuffer)

Additions to Chapter 5 of the 1.1 Specification (Special Functions)
 Section 5.1 Evaluators

 <amend second part of paragraph 2 to indicate that the evaluator
 map modified is affected by SELECTED_TEXTURE_TRANSFORM_SGIS when the
 the type parameter is one of the texture coordinates.>

 <amend paragraph 7>

 The evaluation of a defined map is enabled or disabled with Enable and
 Disable using the constant corresponding to the map as described
 above. In implementations which support multiple texture coordinates the
 affected texture evaluator map is further qualified by the value of
 SELECTED_TEXTURE_TRANSFORM_SGIS. The error INVALID_VALUE results if
 either ustride or vstride is less than k, or if u1 is equal to u2, or
 if v1 is equal to v2.

 Section 5.3 Feedback

 <amend bottom of paragraph 2>

 The texture coordinates and colors returned are these resulting from the
 clipping operations described in (section 2.13.8). Only one set of texture
 coordinates is returned even for implementations which support multiple
 texture coordinates. The texture coordinate set returned is the one
 corresponding to the value of SELECTED_TEXTURE_TRANSFORM_SGIS.

Additions to Chapter 6 of the 1.1 Specification (State and State Requests)
 <add this paragraph after paragraph 14 regarding multi-valued state variables>

 When multiple textures are supported, most texture state variables are
 further qualified by the value of SELECTED_TEXTURE_TRANSFORM_SGIS or
 SELECTED_TEXTURE_SGIS to determine which server texture state vector is
 queried. Client texture state variables such as texture coordinate
 array pointers are qualified with SELECTED_TEXTURE_COORD_SET_SGIS.
 Tables 6.5 through 6.22 indicate those state variables which are

NVIDIA Corporation Advanced OpenGL Development

35

 qualified by SELECTED_TEXTURE_TRANSFORM_SGIS, SELECTED_TEXTURE_SGIS or
 SELECTED_TEXTURE_COORD_SET_SGIS during state queries.

 <add this paragraph after paragraph 16 regarding the TEXTURE_BIT>

 When multiple textures are supported, operations on groups containing
 replicated texture state push or pop all versions of texture state
 within that group. When server state for a group is pushed all state
 in the group corresponding to TEXTURE0_SGIS is pushed first, followed by
 state corresponding to TEXTURE1_SGIS, and so on up to and including the
 state corresponding to TEXTURE<n>_SGIS where <n> is the value of
 max{MAX_TEXTURES_SGIS, MAX_TEXTURE_COORD_SETS_SGIS}. If state does
 not exist for an attribute (this can occur when MAX_TEXTURES_SGIS is
 not equal to MAX_TEXTURE_COORD_SETS_SGIS) then it is ignored.
 When server state for a group is popped the replicated texture state is
 restored in the opposite order that it was pushed, starting with state
 corresponding to TEXTURE<n>_SGIS and ending with TEXTURE0_SGIS.
 Identical rules are observed for client texture state push and pop
 operations.

 <rename vertex_array attribute group to vertex>

Additions to the GLX Specification
 None

GLX Protocol
 TBD

Dependencies on EXT_texture3D
 If EXT_texture3D is not supported than the functionality and state
 associated with EXT_texture3D does not exist and is therefore not extended.

Dependencies on SGIS_texture4D
 If SGIS_texture4D is not supported than the functionality and state
 associated with SGIS_texture4D does not exist and is therefore not extended.

Dependencies on SGIS_texture_border_clamp
 If SGIS_texture_border_clamp is not supported than the functionality and state
 associated with SGIS_texture_border_clamp does not exist and is therefore
 not extended.

Dependencies on SGI_texture_color_table
 If SGI_texture_color_table is not supported than the functionality and state
 associated with SGI_texture_color_table does not exist and is therefore not extended.

Dependencies on SGIS_texture_edge_clamp
 If SGIS_texture_edge_clamp is not supported than the functionality and state
 associated with SGIS_texture_edge_clamp does not exist and is therefore not extended.

Dependencies on SGIX_texture_add_env
 If SGIX_texture_add_env is not supported than the functionality and state
 associated with SGIX_texture_add_env does not exist and is therefore not extended.

Dependencies on SGIS_texture_filter4
 If SGIS_texture_filter4 is not supported than the functionality and state
 associated with SGIS_texture_filter4 does not exist and is therefore not extended.

Dependencies on SGIS_texture_lod
 If SGIS_texture_lod is not supported than the functionality and state
 associated with SGIS_texture_lod does not exist and is therefore not extended.

Dependencies on SGIX_texture_lod_bias
 If SGIX_texture_lod_bias is not supported than the functionality and state
 associated with SGIX_texture_lod_bias does not exist and is therefore not extended.

Dependencies on SGIX_texture_scale_bias
 If SGIX_texture_scale_bias is not supported than the functionality and state
 associated with SGIX_texture_scale_bias does not exist and is therefore not extended.

Dependencies on SGIS_texture_select
 If SGIS_texture_select is not supported than the functionality and state

NVIDIA Corporation Advanced OpenGL Development

36

 associated with SGIS_texture_select does not exist and is therefore not extended.

Dependencies on SGIS_detail_texture
 If SGIS_detail_texture is not supported than the functionality and state
 associated with SGIS_detail_texture does not exist and is therefore not extended.

Dependencies on SGIS_sharpen_texture
 If SGIS_sharpen_texture is not supported than the functionality and state
 associated with SGIS_sharpen_texture does not exist and is therefore not extended.

Dependencies on SGIX_shadow
 If SGIX_shadow is not supported than the functionality and state
 associated with SGIX_shadow does not exist and is therefore not extended.

Dependencies on SGIX_shadow_ambient
 If SGIX_shadow_ambient is not supported than the functionality and state
 associated with SGIX_shadow_ambient does not exist and is therefore not extended.

Dependencies on SGIX_clipmap
 If SGIX_clipmap is not supported than the functionality and state
 associated with SGIX_clipmap does not exist and is therefore not extended.

Dependencies on SGIS_point_line_texgen
 If SGIS_point_line_texgen is not supported than the functionality and state
 associated with SGIS_point_line_texgen does not exist and is therefore not extended.

Errors
 INVALID_ENUM is generated if SelectTextureSGIS, SelectTextureTransformSGIS,
 SelectTextureCoordSetSGIS, MultiTexCoord<n>{T}[v], or MultiTexCoordPointer
 parameter <target> is not TEXTURE0_SGIS .. TEXTURE3_SGIS.

 INVALID_OPERATION is generated if SelectTextureCoordSetSGIS or
 SelectTextureTransformSGIS parameter <target> is one of TEXTURE0_SGIS
 .. TEXTURE3_SGIS and <target> is greater or equal than the number of
 available textures coordinate sets.

 INVALID_VALUE is generated if InterleavedTextureCoordSetsSGIS parameter
 <factor> is not between 1 and MAX_TEXTURE_COORD_SETS_SGIS.

 INVALID_OPERATION is generated if SelectTextureSGIS parameter <target> is
 one of TEXTURE0_SGIS .. TEXTURE3_SGIS and <target> is greater or equal than
 the number of available textures.

 INVALID_ENUM is generated if TexEnv{T}[v] parameter <pname> is
 TEXTURE_ENV_COORD_SET_SGIS and the <param> parameter is not one of
 TEXTURE0_SGIS .. TEXTURE3_SGIS.

 INVALID_OPERATION is generated if TexEnv{T}[v] parameter <pname>
 is TEXTURE_ENV_COORD_SET_SGIS and the <param> parameter is greater or equal
 than the number of available textures coordinate sets.

 INVALID_OPERATION is generated if SelectTextureSGIS or
 SelectTextureTransformSGIS is executed between execution of Begin and the
 corresponding execution of End.

 INVALID_OPERATION is generated if SelectTextureCoordSetSGIS or
 MultiTexCoordPointerSGIS is executed between execution of Begin and the
 corresponding execution of End, but some implementations may not generate
 the error. In such cases the result of executing these commands is
 undefined.

New State

Get Value Get Command Type Initial Value Attribute
--------- ----------- ---- ------------- ---------
SELECTED_TEXTURE_SGIS GetIntegerv Z4 TEXTURE0_SGIS texture
SELECTED_TEXTURE_TRANSFORM_SGIS GetIntegerv Z4 TEXTURE0_SGIS texture
SELECTED_TEXTURE_COORD_SET_SGIS GetIntegerv Z4 TEXTURE0_SGIS vertex
TEXTURE_COORD_SET_INTERLEAVE_FACTOR_SGIS GetIntegerv Z4 1 vertex

Replicated State

NVIDIA Corporation Advanced OpenGL Development

37

Get Value Get Command Type Initial Value Attribute
--------- ----------- ---- ------------- ---------
x CURRENT_TEXTURE_COORDS GetFloatv 1* x T (0,0,0,1) current
x CURRENT_RASTER_TEXTURE_COORDS GetFloatv 1* x T (0,0,0,1) current

c TEXTURE_COORD_ARRAY IsEnabled 1* x B False vertex-array
c TEXTURE_COORD_ARRAY_SIZE GetIntegerv 1* x Z+ 0 vertex-array
c TEXTURE_COORD_ARRAY_TYPE GetIntegerv 1* x Z4 FLOAT vertex-array
c TEXTURE_COORD_ARRAY_STRIDE GetIntegerv 1* x Z+ 0 vertex-array
c TEXTURE_COORD_ARRAY_POINTER GetPointerv 1* x Y 0 vertex-array

x TEXTURE_MATRIX GetFloatv 1* x 2* x M4 Identity -
x TEXTURE_STACK_DEPTH GetIntegerv 1* x Z+ 1 -

 TEXTURE_1D IsEnabled 1* x B False texture/enable
 TEXTURE_2D IsEnabled 1* x B False texture/enable
 TEXTURE_3D_EXT IsEnabled 1* x B False texture/enable
 TEXTURE_4D_SGIS IsEnabled 1* x B False texture/enable
 TEXTURE_BINDING_1D GetIntegerv 1* x Z+ 0 texture
 TEXTURE_BINDING_2D GetIntegerv 1* x Z+ 0 texture
 TEXTURE_BINDING_3D_EXT GetIntegerv 1* x Z+ 0 texture
 TEXTURE_BINDING_4D_SGIS GetIntegerv 1* x Z+ 0 texture
 TEXTURE GetTexImage 1* x n x I see sec 3.8 -
 TEXTURE_WIDTH GetTexLevelParameter 1* x n x Z+ 0 -
 TEXTURE_HEIGHT GetTexLevelParameter 1* x n x Z+ 0 -
 +TEXTURE_DEPTH_EXT GetTexLevelParameter 1* x n x Z+ 0 -
 TEXTURE_BORDER GetTexLevelParameter 1* x n x Z+ 0 -
 TEXTURE_INTERNAL_FORMAT GetTexLevelParameter 1* x n x Z+ 0 -
 (TEXTURE_COMPONENTS)
 TEXTURE_RED_SIZE GetTexLevelParameter 1* x n x Z+ 0 -
 TEXTURE_GREEN_SIZE GetTexLevelParameter 1* x n x Z+ 0 -
 TEXTURE_BLUE_SIZE GetTexLevelParameter 1* x n x Z+ 0 -
 TEXTURE_ALPHA_SIZE GetTexLevelParameter 1* x n x Z+ 0 -
 TEXTURE_LUMINANCE_SIZE GetTexLevelParameter 1* x n x Z+ 0 -
 TEXTURE_INTENISTY_SIZE GetTexLevelParameter 1* x n x Z+ 0 -
 TEXTURE_BORDER_COLOR GetTexParameter 1* x 2+ x C (0,0,0,0) texture
 TEXTURE_MIN_FILTER GetTexParameter 1* x 2+ x Z6 sec 3.8 texture
 TEXTURE_MAG_FILTER GetTexParameter 1* x 2+ x Z2 sec 3.8 texture
 TEXTURE_WRAP_S GetTexParameter 1* x 2+ x Z2 REPEAT texture
 TEXTURE_WRAP_T GetTexParameter 1* x 2+ x Z2 REPEAT texture
 +TEXTURE_WRAP_R_EXT GetTexParameter 1* x 2+ x Z2 REPEAT texture
 +TEXTURE_WRAP_Q_SGIS GetTexParameter 1* x 2+ x Z2 REPEAT texture
 TEXTURE_PRIORITY GetTexParameterfv 1* x 2+ x R [0,1] 1 texture
 TEXTURE_RESIDENT GetTexParameterfv 1* x 2+ x B False texture
 +TEXTURE_MIN_LOD_SGIS GetTexParameterfv 1* x n x R -1000 texture
 +TEXTURE_MAX_LOD_SGIS GetTexParameterfv 1* x n x R 1000 texture
 +TEXTURE_BASE_LEVEL_SGIS GetTexParameteriv 1* x n x R 0 texture
 +TEXTURE_MAX_LEVEL_SGIS GetTexParameteriv 1* x n x R 1000 texture
 +TEXTURE_LOD_BIAS_S_SGIX GetTexParameterfv 1* x n x R 0 texture
 +TEXTURE_LOD_BIAS_T_SGIX GetTexParameterfv 1* x n x R 0 texture
 +TEXTURE_LOD_BIAS_R_SGIX GetTexParameterfv 1* x n x R 0 texture

 +TEXTURE_FILTER4_FUNC_SGIS GetTexFilterFuncSGIS 1* x 2 x Size x R see text texture

 +DETAIL_TEXTURE_2D_BINDING_SGIS GetIntegerv 1* x Z+ 0 texture
 +DETAIL_TEXTURE_LEVEL_SGIS GetTexParameteriv 1* x n x Z- -4 texture
 +DETAIL_TEXTURE_MODE_SGIS GetTexParameteriv 1* x n x Z2 ADD texture
 +DETAIL_TEXTURE_FUNC_POINTS_SGIS GetTexParameteriv 1* x n x Z+ 2 texture
 +<DETAIL_TEXTURE_FUNC> GetDetailTexFuncSGIS 1* x n x m x R {0, 0}, {-4, 1} texture

 +SHARPEN_TEXTURE_FUNC_POINTS_SGIS GetTexParameteriv 1* x n x Z+ 2 texture
 +<SHARPEN_TEXTURE_FUNC> GetSharpenTexFuncSGIS 1* x n x m x R {0, 0},{-4, 1} texture

 +TEXTURE_COMPARE_SGIX GetTexParameter[if]v 1* x B False texture
 +TEXTURE_COMPARE_OPERATOR_SGIX GetTexParameter[if]v 1* x Z_2 TEXTURE_LEQUAL_R_SGIX texture

 +SHADOW_AMBIENT_SGIX GetTexParameter[if]v 1* x R[0,1] 0.0 texture

 +TEXTURE_CLIPMAP_FRAME_SGIX GetTexParameterf 1* x Z+ 0 texture
 +TEXTURE_CLIPMAP_CENTER_SGIX GetTexParameterfv 1* x 2 x Z+ 0,0 texture
 +TEXTURE_CLIPMAP_OFFSET_SGIX GetTexParameterfv 1* x 2 x Z+ 0,0 texture
 +TEXTURE_CLIPMAP_VIRTUAL_DEPTH_SGIX GetTexParameterfv 1* x 3 x Z+ 0,0,0 texture
 +DUAL_TEXTURE_SELECT_SGIS GetTexParameter 1* x n x 3 x Z2 0 texture
 +QUAD_TEXTURE_SELECT_SGIS GetTexParameter 1* x n x 3 x Z4 0 texture

 +POST_TEXTURE_FILTER_BIAS_SGIX GetTexParameterfv 1* x n x 4 x R (0,0,0,0) texture
 +POST_TEXTURE_FILTER_SCALE_SGIX GetTexParameterfv 1* x n x 4 x R (1,1,1,1) texture

 TEXTURE_COLOR_TABLE_SGI IsEnabled B False texture/enable
 +COLOR_TABLE GetColorTableSGI 4 x I empty -
 +COLOR_TABLE_FORMAT_SGI GetColorTableParameterivSGI 2 x 4 x Z38 RGBA -

NVIDIA Corporation Advanced OpenGL Development

38

 +COLOR_TABLE_WIDTH_SGI GetColorTableParameterivSGI 2 x 4 x Z+ 0 -
 +COLOR_TABLE_RED_SIZE_SGI GetColorTableParameterivSGI 2 x 4 x Z+ 0 -
 +COLOR_TABLE_GREEN_SIZE_SGI GetColorTableParameterivSGI 2 x 4 x Z+ 0 -
 +COLOR_TABLE_BLUE_SIZE_SGI GetColorTableParameterivSGI 2 x 4 x Z+ 0 -
 +COLOR_TABLE_ALPHA_SIZE_SGI GetColorTableParameterivSGI 2 x 4 x Z+ 0 -
 +COLOR_TABLE_LUMINANCE_SIZE_SGI GetColorTableParameterivSGI 2 x 4 x Z+ 0 -
 +COLOR_TABLE_INTENSITY_SIZE_SGI GetColorTableParameterivSGI 2 x 4 x Z+ 0 -
 +COLOR_TABLE_SCALE_SGI GetColorTableParameterfvSGI 4 x R4 (1,1,1,1) pixel
 +COLOR_TABLE_BIAS_SGI GetColorTableParameterfvSGI 4 x R4 (0,0,0,0) pixel
 TEXTURE_ENV_MODE GetTexEnviv 1* x Z4 MODULATE texture
 TEXTURE_ENV_COLOR GetTexEnviv 1* x C (0,0,0,0) texture
 TEXTURE_ENV_COORD_SET_SGIS GetTexEnviv 1* x Z4 see sec 3.8 texture
x TEXTURE_GEN_x IsEnabled 1* x 4 x B False texture/enable
x EYE_PLANE GetTexGenfv 1* x 4 x R4 see sec 2.10.4 texture
x OBJECT_PLANE GetTexGenfv 1* x 4 x R4 see sec 2.10.4 texture
x TEXTURE_GEN_MODE GetTexGeniv 1* x 4 x Z3 EYE_LINEAR texture

 +TEXTURE_ENV_BIAS_SGIX GetFloatv 1* x C (0,0,0,0) texture

x+EYE_POINT_SGIS GetTexGeniv 1* x 4 x R (0,0,0,1) texture
x+OBJECT_POINT_SGIS GetTexGeniv 1* x 4 x R (0,0,0,1) texture
x+EYE_LINE_SGIS GetTexGeniv 1* x 7 x R (0,0,0,1,0,0,1) texture
x+OBJECT_LINE_SGIS GetTexGeniv 1* x 7 x R (0,0,0,1,0,0,1) texture

x ORDER GetMapiv (k+9) x Z8* 1 -
x ORDER GetMapiv (k+9) x 2 x Z8* 1,1 -
x COEFF GetMapfv (k+9) x 8* x Rn see sec 5.1 -
x COEFF GetMapfv (k+9) x 8* x 8* x Rn see sec 5.1 -
x DOMAIN GetMapfv (k+9) x 2 x R see sec 5.1 -
x DOMAIN GetMapfv (k+9) x 4 x R see sec 5.1 -
x MAP1_x IsEnabled (k+9) x B False -
x MAP2_x IsEnabled (k+9) x B False -

+ = state defined in another extension.
x = state qualified by SELECTED_TEXTURE_TRANSFORM_SGIS
c = state qualified by SELECTED_TEXTURE_COORD_SET_SGIS

New Implementation Dependent State

 Get Value Get Command Type Minimum Value
 --------- ----------- ---- -------------
 MAX_TEXTURES_SGIS GetIntegerv Z+ 1
 MAX_TEXTURE_COORD_SETS_SGIS GetIntegerv Z+ 1

NVIDIA Corporation Advanced OpenGL Development

39

E. NVIDIA’s Multitexture Combiners Specification

XXX – Preliminary

Name
 GL_NVIDIA_multitexture_combiners

Version
 Date: 1998/04/16 9:00 am
 $Id: //sw/docs/OpenGL/specs/GL_NVIDIA_multitexture_combiners.txt#3$

Number
 ???

Dependencies
 GL_SGIS_multitexture

Overview
 This extension provides a much more flexible mechanism for
 specifying how multiple textures are combined with previous
 fragments. It allows for multiple combiners of the form:
 (Arg0 * Arg1) Op (Arg2 * Arg3)
 where Arg<n> can come from a variety of inputs, such as
 the diffuse color, or any of the currently active textures.
 The result of the previous combiner can be used as an input
 to the next combiner in the chain, thus allowing for very flexible
 specification of how textures, diffuse color, blend factors, and
 other inputs can be factored into the resultant fragment color.

 The alpha channel can receive input from separate sources, and can
 use a separate <Op>, thereby giving even more flexibility to the
 application.

Issues
 None

New Procedures and Functions
 GLvoid
 glMTexCombinerColorArgNVIDIA(GLenum combiner,
 GLenum arg,
 GLenum input,
 GLboolean complementInput,
 GLboolean useAlphaComponent);

 glMTexCombinerColorArg() allows any one of the 4 args (Arg0 ... Arg3)
 to be set to an input to the combiner. Valid inputs are enumerated
 below. The input may be pulled from the alpha channel by setting
 useAlphaComponent to GL_TRUE, such as in the case of a 1-chanel
 texture used as an intensity texture; otherwise the normal red,
 green, or blue component is used. The mathematical complement of
 the input arg may be used by setting complementInput to GL_TRUE.

 GLvoid
 glMTexCombinerAlphaArgNVIDIA(Glenum combiner,
 GLenum arg,
 GLenum input,
 GLboolean complementInput);

 glMTexCombinerAlphaArg() allows any one of the 4 args (Arg0 ... Arg3)
 to be set to an input to the combiner. Valid inputs are enumerated
 below. The mathematical complement of the input arg may be used by
 setting complementInput to GL_TRUE.

 GLvoid
 glMTexCombinerColorOpNVIDIA(Glenum combiner,
 GLenum operation);

 glMTexCombinerColorOp() can be used to set the operation used to
 combine (Arg0 * Arg1) with (Arg2 * Arg3) for the red, green, and

NVIDIA Corporation Advanced OpenGL Development

40

 blue components of the fragment in the specified combiner. It can be any
 of the GL_MTEX_COMBINER_ALPHA_OP_* enumerants below.

 GLvoid
 glMTexCombinerAlphaOpNVIDIA(GLenum combiner,
 GLenum operation);

 glMTexCombinerAlphaOp() can be used to set the operation used to
 combine (Arg0 * Arg1) with (Arg2 * Arg3) for the alpha component
 of the fragment in the specified combiner. It can be any of the
 GL_MTEX_COMBINER_ALPHA_OP_* enumerants below.

 GLvoid
 glMTexCombinerBlendFactorNVIDIA(GLenum combiner,
 GLfloat red,
 GLfloat green,
 GLfloat blue,
 GLfloat alpha);

 glMTexCombinerBlendFactor() allows the application to specify a
 color that can be optionally used as one of the inputs to the
 specified combiner. This allows for texture applications such as
 the GL_BLEND TexEnv to be implemented.

New Tokens
 Accepted by glEnable() and glDisable():
 GL_NVIDIA_COMBINERS_ENABLE ??? 0x900F

 Accepted by the <combiner> parameter of all of the above-specified
 functions:
 GL_MTEX_COMBINER_0 ??? 0x9010
 GL_MTEX_COMBINER_1 ??? 0x9011
 GL_MTEX_COMBINER_2 ??? 0x9012
 GL_MTEX_COMBINER_3 ??? 0x9013
 <reserve enums for 32 combiners>

 Accepted by the <arg> parameter of glMTexCombinerColorArg() and
 glMTexCombinerAlphaArg():
 GL_MTEX_COMBINER_ARG0 ??? 0x9030
 GL_MTEX_COMBINER_ARG1 ??? 0x9031
 GL_MTEX_COMBINER_ARG2 ??? 0x9032
 GL_MTEX_COMBINER_ARG3 ??? 0x9033

 Accepted by the <input> parameter of glMTexCombinerColorArg() and
 glMTexCombinerAlphaArg():
 GL_MTEX_COMBINER_INPUT_ZERO ??? 0x9040
 GL_MTEX_COMBINER_INPUT_FACTOR ??? 0x9041 /* Blend factor */
 GL_MTEX_COMBINER_INPUT_DIFFUSE ??? 0x9042 /* Diffuse color */
 GL_MTEX_COMBINER_INPUT_PREVCOMBINER ??? 0x9043 /* Output of
 previous combiner */
 GL_MTEX_COMBINER_INPUT_TEXTURE0 ??? 0x9044 /* Multitexture Tex0 */
 GL_MTEX_COMBINER_INPUT_TEXTURE1 ??? 0x9045 /* Multitexture Tex1 */
 <reserve enums for 32 textures>
 GL_MTEX_COMBINER_INPUT_TEXTURELOD ??? 0x9064 /* Fractional component
 of TextureLOD
 computation, allowing
 for very flexible
 mipmapping effects */

 Accepted by the <operation> parameter of glMTexCombinerColorOp() and
 glMTexCombinerAlphaOp():

GL_MTEX_COMBINER_OP_ADD ??? 0x9070 /* (A0*A1) + (A2*A3) */
GL_MTEX_COMBINER_OP_ADDTIMES2 ??? 0x9071 /* ((A0*A1) + (A2*A3)) << 1 */
GL_MTEX_COMBINER_OP_ADDTIMES4 ??? 0x9072 /* ((A0*A1) + (A2*A3)) << 2 */
GL_MTEX_COMBNIER_OP_ADDSIGNED ??? 0x9073 /* (A0*A1) + (A2*A3) - 128 */
GL_MTEX_COMBINER_OP_MUX ??? 0x9074 /* (A0*A1) or (A2*A3) */
GL_MTEX_COMBINER_OP_ADDCOMPLEMENT ??? 0x9075 /* ~((A0*A1) + (A2*A3)) */
GL_MTEX_COMBINER_OP_ADDSIGNEDTIMES2 ??? 0x9076 /* ((A0*A1) + (A2*A3) - 128) << 1 */

NVIDIA Corporation Advanced OpenGL Development

41

F. Secondary Color Specification

XXX – Preliminary

Name
 secondary_color

Name Strings
 GL_EXT_secondary_color

Version
 $Date: 1998/04/23 04:51:41 $ $Revision: 1.5 $

Number
 145

Dependencies
 Either EXT_separate_specular_color or OpenGL 1.2 is required, to specify
 the "Color Sum" stage and other handling of the secondary color. This is
 written against the 1.2 specification (available from www.opengl.org).

Overview
 This extension allows specifying the RGB components of the secondary
 color used in the Color Sum stage, instead of using the default
 (0,0,0,0) color. It applies only in RGBA mode and when LIGHTING is
 disabled.

Issues
 * Can we use the secondary alpha as an explicit fog weighting factor?

ISVs prefer a separate interface (see GL_EXT_fog_coord). The current
interface specifies only the RGB elements, leaving the option of a
separate extension for SecondaryColor4() entry points open.

There is an unpleasant asymmetry with Color3() - one assumes A =
1.0, the other assumes A = 0.0 - but this appears unavoidable given
the 1.2 color sum specification language. Alternatively, the color
sum language could be rewritten to not sum secondary A.

 * What about multiple "color iterators" for use with aggrandized
 multitexture implementations?

We may need this eventually, but the secondary color is well defined
and a more generic interface doesn't seem justified now.

 * Interleaved array formats?

No. The multiplicative explosion of formats is too great.

 * Do we want to be able to query the secondary color value? How does it
 interact with lighting?

The secondary color is not part of the GL state in the
separate_specular_color extension. It can't be queried or obtained
via feedback.

Since the secondary_color extension is just to serve during
transition to fragment lighting, let's not go overboard - it needs
to be in the GL state, but not much beyond that.

NVIDIA Corporation Advanced OpenGL Development

42

New Procedures and Functions
 void SecondaryColor3[bsifd ubusui]EXT(T components)
 void SecondaryColor3[bsifd ubusui]vEXT(T components)
 void SecondaryColorPointerEXT(int size, enum type, sizei stride,

 void *pointer)

New Tokens
 Accepted by the <cap> parameter of Enable, Disable, and IsEnabled,
 and by the <pname> parameter of GetBooleanv, GetIntegerv, GetFloatv,
 and GetDoublev:

COLOR_SUM_EXT ???

 Accepted by the <pname> parameter of GetBooleanv, GetIntegerv,
 GetFloatv, and GetDoublev:

CURRENT_SECONDARY_COLOR_EXT ???
SECONDARY_COLOR_ARRAY_SIZE_EXT ???
SECONDARY_COLOR_ARRAY_TYPE_EXT ???
SECONDARY_COLOR_ARRAY_STRIDE_EXT ???

 Accepted by the <pname> parameter of GetPointerv:

SECONDARY_COLOR_ARRAY_POINTER_EXT ???

 Accepted by the <array> parameter of EnableClientState and
 DisableClientState:

SECONDARY_COLOR_ARRAY_EXT ???

Additions to Chapter 2 of the 1.2 Draft Specification (OpenGL Operation)

 These changes describe a new current state type, the secondary color, and
 the commands to specify it:

 - (2.6, p. 12) Second paragraph changed to:

"Each vertex is specified with two, three, or four coordinates. In
addition, a current normal, current texture coordinates, current
color, and current secondary color may be used in processing each
vertex."

 Third paragraph, second sentence changed to:

"These associated colors are either based on the current color and
current secondary color, or produced by lighting, depending on
whether or not lighting is enabled."

 - 2.6.3, p. 19) First paragraph changed to

"The only GL commands that are allowed within any Begin/End pairs
are the commands for specifying vertex coordinates, vertex colors,
normal coordinates, and texture coordinates (Vertex, Color,
SecondaryColorEXT, Index, Normal, TexCoord)..."

 - (2.7, p. 20) Starting with the fourth paragraph, change to:

"Finally, there are several ways to set the current color and
secondary color. The GL stores a current single-valued color index
as well as a current four-valued RGBA color and secondary color.
Either the index or the color and secondary color are significant
depending as the GL is in color index mode or RGBA mode. The mode
selection is made when the GL is initialized.

NVIDIA Corporation Advanced OpenGL Development

43

The commands to set RGBA colors and secondary colors are:

 void Color[34][bsifd ubusui](T components)
 void Color[34][bsifd ubusui]v(T components)
 void SecondaryColor3[bsifd ubusui]EXT(T components)
 void SecondaryColor3[bsifd ubusui]vEXT(T components)

The color command has two major variants: Color3 and Color4. The
four value versions set all four values. The three value versions
set R, G, and B to the provided values; A is set to 1.0. (The
conversion of integer color components (R, G, B, and A) to
floating-point values is discussed in section 2.13.)

The secondary color command has only the three value versions.
Secondary A is always set to 0.0.

Versions of the Color and SecondaryColorEXT commands that take
floating-point values accept values nominally between 0.0 and
1.0...."

 The last paragraph is changed to read:

"The state required to support vertex specification consists of four
floating-point numbers to store the current texture coordinates s,
t, r, and q, four floating-point values to store the current RGBA
color, four floating-point values to store the current RGBA
secondary color, and one floating-point value to store the current
color index. There is no notion of a current vertex, so no state is
devoted to vertex coordinates. The initial values of s, t, and r of
the current texture coordinates are zero; the initial value of q is
one. The initial current normal has coordinates (0,0,1). The initial
RGBA color is (R,G,B,A) = (1,1,1,1). The initial RGBA secondary
color is (R,G,B,A) = (0,0,0,0). The initial color index is 1."

 - (2.8, p. 21) Added secondary color command for vertex arrays:

 Change first paragraph to read:

"The vertex specification commands described in section 2.7 accept
data in almost any format, but their use requires many command
executions to specify even simple geometry. Vertex data may also be
placed into arrays that are stored in the client's address space.
Blocks of data in these arrays may then be used to specify multiple
geometric primitives through the execution of a single GL command.
The client may specify up to seven arrays: one each to store edge
flags, texture coordinates, colors, secondary colors, color indices,
normals, and vertices. The commands"

 Add to functions listed following first paragraph:

void SecondaryColorPointerEXT(int size, enum type, sizei stride,
 void *pointer)

 Add to table 2.4 (p. 22):

Command Sizes Types
------- ----- -----
SecondaryColorPointerEXT 3,4 byte,ubyte,short,ushort,int,uint,

 float,double

 Starting with the second paragraph on p. 23, change to add
 SECONDARY_COLOR_ARRAY_EXT:

NVIDIA Corporation Advanced OpenGL Development

44

"An individual array is enabled or disabled by calling one of

 void EnableClientState(enum array)
 void DisableClientState(enum array)

with array set to EDGE_FLAG_ARRAY, TEXTURE_COORD_ARRAY, COLOR_ARRAY,
SECONDARY_COLOR_ARRAY_EXT, INDEX_ARRAY, NORMAL_ARRAY, or
VERTEX_ARRAY, for the edge flag, texture coordinate, color,
secondary color, color index, normal, or vertex array, respectively.

The ith element of every enabled array is transferred to the GL by
calling

 void ArrayElement(int i)

For each enabled array, it is as though the corresponding command
from section 2.7 or section 2.6.2 were called with a pointer to
element i. For the vertex array, the corresponding command is
Vertex<size><type>v, where <size> is one of [2,3,4], and <type> is
one of [s,i,f,d], corresponding to array types short, int, float,
and double respectively. The corresponding commands for the edge
flag, texture coordinate, color, secondary color, color index, and
normal arrays are EdgeFlagv, TexCoord<size><type>v,
Color<size><type>v, SecondaryColor3<type>vEXT, Index<type>v, and
Normal<type>v, respectively..."

 Change pseudocode on p. 27 to disable secondary color array for
 canned interleaved array formats. After the lines

 DisableClientState(EDGE_FLAG_ARRAY);
 DisableClientState(INDEX_ARRAY);

insert the line

 DisableClientState(SECONDARY_COLOR_ARRAY_EXT);

 Substitute "seven" for every occurrence of "six" in the final paragraph
 on p. 27.

 - (2.12, p. 41) Add secondary color to the current rasterpos state.

 Change the last paragraph to read

"The current raster position requires five single-precision
floating-point values for its x_w, y_w, and z_w window coordinates,
its w_c clip coordinate, and its eye coordinate distance, a single
valid bit, a color (RGBA color, RGBA secondary color, and color
index), and texture coordinates for associated data. In the initial
state, the coordinates and texture coordinates are both $(0,0,0,1)$,
the eye coordinate distance is 0, the valid bit is set, the
associated RGBA color is $(1,1,1,1)$, the associated RGBA secondary
color is $(0,0,0,0)$, and the associated color index color is 1. In
RGBA mode, the associated color index always has its initial value;
in color index mode, the RGBA color and secondary color always
maintain their initial values."

 - (2.13, p. 43) Change second paragraph to acknowledge two colors when
 lighting is disabled:

"Next, lighting, if enabled, produces either a color index or
primary and secondary colors. If lighting is disabled, the current
color index or current color (primary color) and current secondary

NVIDIA Corporation Advanced OpenGL Development

45

color are used in further processing. After lighting, RGBA colors
are clamped..."

 - (Figure 2.8, p. 42) Change to show primary and secondary RGBA colors in
 both lit and unlit paths.

 - (2.13.1, p. 44) Change so that the second paragraph starts:

 "Lighting may be in one of two states:

 1. Lighting Off. In this state, the current color and current secondary
color are assigned to the vertex primary color and vertex secondary
color, respectively.

 2. ..."

 - (2.13.1, p. 48) Change the sentence following equation 2.5 (for spot_i)
 so that color sum is implicitly enabled when SEPARATE_SPECULAR_COLOR is
 set:

 "All computations are carried out in eye coordinates. When c_es =
 SEPARATE_SPECULAR_COLOR, it is as if color sum (see section 3.9) were
 enabled, regardless of the value of COLOR_SUM_EXT."

 - (3.9, p. 136) Change the first paragraph to read

 "After texturing, a fragment has two RGBA colors: a primary color c_pri
 (which texturing, if enabled, may have modified) and a secondary color
 c_sec.

 If color sum is enabled, the components of these two colors are summed
 to produce a single post-texturing RGBA color c (the A component of the
 secondary color is always 0). The components of c are then clamped to
 the range [0,1]. If color sum is disabled, then c_pri is assigned to the
 post texturing color. Color sum is enabled or disabled using the generic
 Enable and Disable commands, respectively, with the symbolic constant
 COLOR_SUM_EXT.

 The state required is a single bit indicating whether color sum is
 enabled or disabled. In the initial state, color sum is disabled."

Additions to Chapter 6 of the 1.2 Specification (State and State Requests)

 None

Additions to the GLX Specification

 None (we don't expect this extension to be used on GLX implementations; if
 it is, new GLX enumerants for the secondary color will be introduced).

GLX Protocol

 None (as for the GLX Specification)

Errors

 INVALID_VALUE is generated if SecondaryColorPointerEXT parameter <size>
 is not 3.

 INVALID_ENUM is generated if SecondaryColorPointerEXT parameter <type>
 is not BYTE, UNSIGNED_BYTE, SHORT, UNSIGNED_SHORT, INT, UNSIGNED_INT,
 FLOAT, or DOUBLE.

NVIDIA Corporation Advanced OpenGL Development

46

 INVALID_VALUE is generated if SecondaryColorPointerEXT parameter
 <stride> is negative.

New State

(table 6.5, p. 195)
Get Value Type Get Command Initial Value Description Sec Attribute
--------- ---- ----------- ------------- ----------- --- ---------
CURRENT_SECONDARY_COLOR_EXT C GetIntegerv, (0,0,0,0) Current 2.7 current

GetFloatv secondary color

(table 6.6, p. 197)
Get Value Type Get Command Initial Value Description Sec Attribute
--------- ---- ----------- ------------- ----------- --- ---------
SECONDARY_COLOR_ARRAY_EXT B IsEnabled False Sec. color array enable 2.8 vertex-array
SECONDARY_COLOR_ARRAY_SIZE_EXT Z+ GetIntegerv 3 Sec. colors per vertex 2.8 vertex-array
SECONDARY_COLOR_ARRAY_TYPE_EXT Z8 GetIntegerv FLOAT Type of sec. color components 2.8 vertex-array
SECONDARY_COLOR_ARRAY_STRIDE_EXT Z+ GetIntegerv 0 Stride between sec. colors 2.8 vertex-array
SECONDARY_COLOR_ARRAY_POINTER_EXT Y GetPointerv 0 Pointer to the sec. color array 2.8 vertex-array

(table 6.8, p. 198)
Get Value Type Get Command Initial Value Description Sec Attribute
--------- ---- ----------- ------------- ----------- --- ---------
COLOR_SUM_EXT B IsEnabled False True if color 3.9 fog/enable

sum enabled

NVIDIA Corporation Advanced OpenGL Development

47

G. Fog Coordinate Specification

XXX - Not complete yet!!!

Name
 fog_coord

Name Strings
 GL_EXT_fog_coord

Version
 $Date: 1998/04/09 22:09:14 $ $Revision: 1.2 $

Number
 149

Dependencies
 OpenGL 1.1 is required. fog_coord is written against the OpenGL 1.2
 specification (available from www.opengl.org) to make the spec
 forward-looking, although no 1.2 features are required.

Overview
 This extension allows specifying an explicit per-vertex fog coord to be
 used in fog computations, rather than using a fragment depth-based fog
 equation.

Issues
 * Should the specified value be used directly as the fog weighting factor,
 or in place of the z input to the fog equations?

As the z input, adding more flexibility at potential performance
cost.

 * Do we want vertex array entry points? Interleaved array formats?

Yes for entry points, no for interleaved formats, following the
argument for secondary_color.

 * Which scalar types should FogCoord accept? The full range, or just the
 unsigned and float versions? At the moment it follows Index(), which
 takes unsigned byte, signed short, signed int, float, and double.

Since we're now specifying a number which behaves like an eye-space
distance, rather than a [0,1] quantity, integer types are less
useful. However, restricting the commands to floating-point forms
only introduces some nonorthogonality.

Restrict to only float and double, for now.

 * Interpolation of the fog coordinate may be perspective-correct or not.
 Should this be affected by PERSPECTIVE_CORRECTION_HINT, FOG_HINT, or
 another to-be-defined hint?

PERSPECTIVE_CORRECTION_HINT; this is already defined to affect all
interpolated parameters. Admittedly this is a loss of orthogonality.

 * Should the current fog coordinate be queryable?

Yes; GetFloatv(FOG_COORDINATE).

 * Control the fog coordinate source via an Enable instead of a fog
 parameter?

No. We might want to add more sources later.

 * Should the fog coordinate be restricted to non-negative values?

Perhaps. Eye-coordinate distance of fragments will be non-negative
due to clipping. Specifying explicit negative coordinates may result

NVIDIA Corporation Advanced OpenGL Development

48

in very large computed f values, although they are defined to be
clipped after computation.

 * Use existing DEPTH enum instead of FRAGMENT_DEPTH? Change name of
 FRAGMENT_DEPTH to FOG_FRAGMENT_DEPTH?

Undecided.

New Procedures and Functions
 void FogCoord[fd]EXT(T coord)
 void FogCoord[fd]vEXT(T coord)
 void FogCoordPointerEXT(enum type, sizei stride, void *pointer)

New Tokens
 Accepted by the <param> parameter of Fogi and Fogf:

FOG_COORDINATE_SOURCE ???
FOG_COORDINATE ???
FRAGMENT_DEPTH ???

 Accepted by the <array> parameter of EnableClientState and
 DisableClientState:

FOG_FACTOR_ARRAY_EXT ???

Additions to Chapter 2 of the 1.2 Draft Specification (OpenGL Operation)
 These changes describe a new current state type, the fog coordinate, and the
 commands to specify it:

 - (2.6, p. 12) Second paragraph changed to:

"Each vertex is specified with two, three, or four coordinates. In
addition, a current normal, current texture coordinates, current
color, and current fog coordinate may be used in processing each
vertex."

 - 2.6.3, p. 19) First paragraph changed to

"The only GL commands that are allowed within any Begin/End pairs
are the commands for specifying vertex coordinates, vertex colors,
normal coordinates, texture coordinates, and fog coordinates (Vertex,
Color, Index, Normal, TexCoord, FogCoord)..."

 - (2.7, p. 20) Insert the following paragraph following the third
paragraph describing current normals:

" The current fog factor is set using
void FogCoord[fd]EXT(T coord)
void FogCoord[fd]vEXT(T coord)."

 The last paragraph is changed to read:

"The state required to support vertex specification consists of four
floating-point numbers to store the current texture coordinates s,
t, r, and q, one floating-point value to store the current fog
coordinate, four floating-point values to store the current RGBA
color, and one floating-point value to store the current color
index. There is no notion of a current vertex, so no state is
devoted to vertex coordinates. The initial values of s, t, and r of
the current texture coordinates are zero; the initial value of q is
one. The initial fog coordinate is zero. The initial current normal
has coordinates (0,0,1). The initial RGBA color is (R,G,B,A) =
(1,1,1,1). The initial color index is 1."

 - (2.8, p. 21) Added fog coordinate command for vertex arrays:

 Change first paragraph to read:

"The vertex specification commands described in section 2.7 accept
data in almost any format, but their use requires many command
executions to specify even simple geometry. Vertex data may also be

NVIDIA Corporation Advanced OpenGL Development

49

placed into arrays that are stored in the client's address space.
Blocks of data in these arrays may then be used to specify multiple
geometric primitives through the execution of a single GL command.
The client may specify up to seven arrays: one each to store edge
flags, texture coordinates, fog coordinates, colors, color indices,
normals, and vertices. The commands"

 Add to functions listed following first paragraph:

void FogCoordPointerEXT(enum type, sizei stride, void *pointer)

 Add to table 2.4 (p. 22):

Command Sizes Types
------- ----- -----
FogCoordPointerEXT 1 float,double

 Starting with the second paragraph on p. 23, change to add
 FOG_FACTOR_ARRAY_EXT:

"An individual array is enabled or disabled by calling one of

 void EnableClientState(enum array)
 void DisableClientState(enum array)

with array set to EDGE_FLAG_ARRAY, TEXTURE_COORD_ARRAY,
FOG_FACTOR_ARRAY_EXT, COLOR_ARRAY, INDEX_ARRAY, NORMAL_ARRAY, or
VERTEX_ARRAY, for the edge flag, texture coordinate, fog coordinate,
color, color index, normal, or vertex array, respectively.

The ith element of every enabled array is transferred to the GL by
calling

 void ArrayElement(int i)

For each enabled array, it is as though the corresponding command
from section 2.7 or section 2.6.2 were called with a pointer to
element i. For the vertex array, the corresponding command is
Vertex<size><type>v, where <size> is one of [2,3,4], and <type> is
one of [s,i,f,d], corresponding to array types short, int, float,
and double respectively. The corresponding commands for the edge
flag, texture coordinate, fog coordinate, color, secondary color,
color index, and normal arrays are EdgeFlagv, TexCoord<size><type>v,
FogCoord<type>v, Color<size><type>v, Index<type>v, and
Normal<type>v, respectively..."

 Change pseudocode on p. 27 to disable fog coordinate array for canned
 interleaved array formats. After the lines

 DisableClientState(EDGE_FLAG_ARRAY);
 DisableClientState(INDEX_ARRAY);

insert the line

 DisableClientState(FOG_FACTOR_ARRAY_EXT);

 Substitute "seven" for every occurrence of "six" in the final paragraph
 on p. 27.

 - (2.12, p. 41) Add fog coordinate to the current rasterpos state.

 Change the first sentence of the first paragraph to read

"The state required for the current raster position consists of
three window coordinates x_w, y_w, and z_w, a clip coordinate w_c
value, an eye coordinate distance, a fog coordinate, a valid bit,
and associated data consisting of a color and texture coordinates."

 Change the last paragraph to read

"The current raster position requires six single-precision

NVIDIA Corporation Advanced OpenGL Development

50

floating-point values for its x_w, y_w, and z_w window coordinates,
its w_c clip coordinate, its eye coordinate distance, and its fog
coordinate, a single valid bit, a color (RGBA color and color
index), and texture coordinates for associated data. In the initial
state, the coordinates and texture coordinates are both (0,0,0,1),
the fog coordinate is 0, the eye coordinate distance is 0, the valid
bit is set, the associated RGBA color is (1,1,1,1), and the
associated color index color is 1. In RGBA mode, the associated
color index always has its initial value; in color index mode, the
RGBA color always maintains its initial value."

 - (3.10, p. 139) Change the second and third paragraphs to read

"This factor f may be computed according to one of three equations:"

 f = exp(-d*c) (3.24)
 f = exp(-(d*c)^2) (3.25)
 f = (e-c)/(e-s) (3.26)

If the fog source (as defined below) is FRAGMENT_DEPTH, then c is
the eye-coordinate distance from the eye, (0 0 0 1) in eye
coordinates, to the fragment center. If the fog source if
FOG_COORDINATE, then c is the interpolated value of the fog
coordinate for this fragment. The equation and the fog source, along
with either d or e and s, is specified with

 void Fog{if}(enum pname, T param);
 void Fog{if}v(enum pname, T params);

If <pname> is FOG_MODE, then <param> must be, or <param> must point
to an integer that is one of the symbolic constants EXP, EXP2, or
LINEAR, in which case equation 3.24, 3.25, or 3.26,, respectively,
is selected for the fog calculation (if, when 3.26 is selected, e =
s, results are undefined). If <pname> is FOG_COORDINATE_SOURCE, then
<param> is or <params> points to an integer that is one of the
symbolic constants FRAGMENT_DEPTH or FOG_COORDINATE. If <pname> is
FOG_DENSITY, FOG_START, or FOG_END, then <param> is or <params>
points to a value that is d, s, or e, respectively. If d is
specified less than zero, the error INVALID_VALUE results."

 - (3.10, p. 140) Change the last paragraph preceding section 3.11
 to read

"The state required for fog consists of a three valued integer to
select the fog equation, three floating-point values d, e, and s, an
RGBA fog color and a fog color index, a two-valued integer to select
the fog coordinate source, and a single bit to indicate whether or
not fog is enabled. In the initial state, fog is disabled,
FOG_COORDINATE_SOURCE is FRAGMENT_DEPTH, FOG_MODE is EXP, d = 1.0, e
= 1.0, and s = 0.0; C_f = (0,0,0,0) and i_f=0."

Additions to Chapter 6 of the 1.2 Specification (State and State Requests)
 None

Additions to the GLX Specification
 None (we don't expect this extension to be used on GLX implementations; if
 it is, new GLX enumerants for the fog coordinate will be introduced).

GLX Protocol
 None (as for the GLX Specification)

Errors
 INVALID_ENUM is generated if FogCoordPointerEXT parameter <type> is not
 FLOAT or DOUBLE.

 INVALID_VALUE is generated if FogCoordPointerEXT parameter <stride> is
 negative.

New State

Get Value Type Get Command Initial Value Description Sec Attribute

NVIDIA Corporation Advanced OpenGL Development

51

--------- ---- ----------- ------------- ----------- --- ---------
(table 6.6, p. 196)
 For each of the 4 INDEX_ARRAY* table entries, add a corresponding
 FOG_FACTOR_ARRAY*_EXT entry with the same type, get command, initial
 value, section, and attribute, and with "fog coordinate" replacing "index"
 and "indice" in its description.

(table 6.8, p. 198)
 FOG_COORDINATE R GetIntegerv, 0 Current 3.10 fog

GetFloatv fog coordinate
 FOG_COORDINATE_SOURCE Z2 GetIntegerv, FRAGMENT_DEPTH Source of fog 3.10 fog

GetFloatv coord for
fog calculation

