All About OpenGL Extensions,
including specifications
for some significant OpenGL extensions

Mark J. Kilgard *
NVIDIA Corporation

OpenGL is an extensible low-level graphics API. Extensible is the key word. OpenGL
implementations are free to extend OpenGL’s basic rendering functionality with new rendering
operations. Scores of OpenGL extensions have been specified and implemented. These
extensions provide OpenGL application developers with new rendering features above and
beyond the features specified in the official OpenGL standard. OpenGL extensions keep the
OpenGL API current with the latest innovations in graphics hardware and rendering algorithms.
Better yet, extensions provide OpenGL with that fresh minty taste that developers love.

The document reviews the OpenGL extension mechanism and describes a set of new significant
OpenGL extensions likely to be interesting to PC game developers. By reading this document,
you will learn not just what extensions are but how to use them portably in your programs and
how to read OpenGL extension specifications. The appendixes contains selected significant
OpenGL extension specifications of interest to the PC 3D game developer. Note that in some
cases as noted, several extension specifications are preliminary versions.

1. How OpenGL Extensions are Documented

An OpenGL extension is defined by its specification. These specifications are typically written as
standard ASCII text files. OpenGL extension specifications are written by and for OpenGL
implementers. A well-written OpenGL specification is documented to the level of detail needed
for a hardware designer and/or OpenGL library engineer to unambiguously implement the
extension. This means that OpenGL application programmers should not expect an extension’s
specification to fully justify why the functionality exists or how an OpenGL application would go
about using the functionality. An OpenGL extension is not a tutorial on how to use the particular
extension. Still, being able to read and understand an OpenGL specification helps you, the
application programmer, fully understand an OpenGL extension’s functionality.

2. Where to Find OpenGL Extension Specifications

The latest public OpenGL specifications can be found on the www.opendl.org web site. Note that
extension specifications are updated from time to time based on reviews and implementation
feedback.

3. How to Read an OpenGL Extension Specification

When reading an OpenGL extension specification, it helps to be familiar with the original OpenGL
specification. The operation of an OpenGL extension is described as additions and changes to
the core OpenGL specification. Having a copy of the core OpenGL specification handy is a good
idea when reviewing an OpenGL specification.

" Mark graduated with B.A. in Computer Science from Rice University and is a System Software
Engineer at NVIDIA. Mark is the author of OpenGL Programming for the X Window System
(Addison-Wesley, ISBN 0-201-48359-9) and can be reached by electronic mail addressed to
mjk@nvidia.com

NVIDIA Corporation Advanced OpenGL Development

OpenGL extension specifications consist of multiple sections. There is common form established
by convention used by nearly all OpenGL extension specifications. Often within a specification,
the gl and G prefixes on routine names and tokens are assumed. The following describes the
purpose of the most common sections in the order that they normally appear in extension
specifications:

Name

Lists the official name of the extension. This name uses underscores instead of spaces
between words. The name also begins with a prefix that indicates who developed the
extension. This prefix helps to avoid naming conflicts if two independent groups
implement a similar extension. It also helps identity who is promoting use of the
extension. For example: SGA S_poi nt _par anet er s was an extension proposed by
Silicon Graphics. The SG S prefix belongs to Silicon Graphics. SGI uses the SA S prefix
to indicate the extension is specialized and may not be available on all SGI hardware.
Other prefixes in use are:

ARB — Extensions officially approved by the OpenGL Architectural Review Board
EXT — Extensions agreed upon by multiple OpenGL vendors

HP — Hewlett-Packard

| BM— International Business Machines

I NTEL — Intel

NVI DI A— NVIDIA Corporation, coolest 3D company on the planet

MESA — Brian Paul’'s freeware portable OpenGL implementation

SA X — Silicon Graphics (experimental)

SUN— Sun Microsystems

W N — Microsoft

Note that the S@ S_poi nt _par anet er s extension has since been standardized by
other OpenGL vendors such as NVIDIA. So now there is also an

EXT_poi nt _par anet er s extension with the same basic functionality as the SG S
version. The EXT prefix indicates that multiple vendors have agreed to support the
extension. Successful OpenGL extensions are often promoted to EXT or ARB extensions
or made an official part of OpenGL in a future revision to the core OpenGL specification.
Almost all of the new functionality in OpenGL 1.1 and 1.2 showed up first as OpenGL
extensions.

Name Strings

The name string or strings is used to indicate that the extension is supported by a given
OpenGL implementation. Applications can query the GL_EXTENSI ONS string with
OpenGL’s gl Get St ri ng to determine what extensions are available. OpenGL also
supports the idea of window system dependent extensions. Core OpenGL extension
name strings are generally prefixed with GL while window system dependent extensions
are prefixed with GLX for the X Window System or W&EL for Win32 based on what window
system the extension applies to. Note that there may be multiple strings if the extension
provides both core OpenGL rendering functionality and window system dependent
functionality.

Version

A source code control revision string to keep track of what version of the specification the
given text file represents. It is important to make sure that you have the latest version of
the extension specification in case there are any important changes. Normally the
version string has the date the extension was last updated.

Number

NVIDIA Corporation Advanced OpenGL Development

Each OpenGL extension is assigned a unique number. Silicon Graphics allocates these
numbers to ensure that OpenGL extensions do not overlap in their usage of enumerants
or protocol tokens. This number is only important to extension implementers.

Dependencies

Often an extension specification builds on the functionality of pre-existing extensions.
This section documents what extensions the specified extension depends on.
Dependencies indicate that another extension “is required” to support the specified
extension or that the specified extension “affects” the specification of another extension.
When an extension affects the specification of another extension, the affecting extension
is responsible for fully documenting the interactions between the two extensions.

The dependencies section often also indicates which version of the OpenGL core
standard that the extension specification is based on. Later sections specify the
extension based on updates to the relevant section of the particular OpenGL specification
that the extension is based on.

You can often tell how important a given extension is to the evolution of OpenGL based
on how many other extensions are listed that depend on or are affected by the given
extension. The multitexture extension to be discussed later affects gobs of other
extensions!

Overview

The section provides a description, often terse and without justification, for the
extension’s specified functionality. If you are trying to figure out what the extension does,
this is the most useful section of an OpenGL extension specification. Do not expect a
tutorial though.

Issues

Often there are issues that need to be resolved in the specification of an extension. This
section documents open issues and states the resolution to resolved issues. These
issues are often things of interest to the extension implementer, but can also help a
programmer understand how the extension really works.

New Procedures and Functions

This section lists the function prototypes for any new procedures and functions that the
extension adds. Keep in mind that specifications often leave out the gl prefix when
discussing routines. Also note that the extension’s new functions will be suffixed with the
same letters used as the prefix for the extension name.

New Tokens

This section lists the tokens (also called enumerants) that the extension adds. The
routines that accept each set of new enumerants are documented. The integer value of
the enumerants is documented here. These values should be added to <G/ gl . h>.
Keep in mind that specifications often leave out the G_ prefix when discussing
enumerants. Also note that the extension’s new enumerants will be suffixed with the
same letters used as the prefix for the extension name.

Additions to Chapter XX of the 1.X Specification (XXX)

These sections document how the core OpenGL specification should be amended to add
the extension’s functionality to the core OpenGL functionality. Notice that the exact
version of the core OpenGL specification (such as 1.0, 1.1, or 1.2) is documented. The
chapters typically amended by an extension specification are:

Chapter 2 — OpenGL Operations
Chapter 3 — Rasterization

NVIDIA Corporation Advanced OpenGL Development

Chapter 4 — Fragments and the Framebuffer
Chapter 5 — Special Functions
Chapter 6 — State and State Requests

These sections are quite legalistic. They indicate precisely how the OpenGL
specification wording should be amended or changed. Often tables within the
specification are amended as well.

Additions to the GLX Specification
If an extension has any window system dependent functionality affecting the GLX
interface to the X Window System, these issues would be documented here.

GLX Protocol

When implementing the extension for the X Window System, if any special X11 extension
protocol for the GLX extension is required to support the extension, the protocol would be
documented in this section.

Dependencies on XXX

These sections describe how the extension depends on some other extension that was
listed in the Dependencies section. Usually the wording says that if the other extension is
not supported, simply ignore the portion of this extension dealing with the dependent
extension’s state and functionality.

Errors
If the extension introduces any new error conditions particular to the extension, they are
documented here.

New State

Extensions typically add new state variables to OpenGL'’s state machine. These new
variables are documented in this section. The variable’s get enumerant, type, get
command, initial value, description, section of the specification describing the state
variable’s function, and the attribute group that the state belongs to are all documented in
tables in this section.

New Implementation Dependent State

Extensions may add implementation dependent state. These are typically maximum and
minimum supported ranges for the extension functionality. For example, what is the
widest line size supported by the extension. These values can be queried through
OpenGL’s gl Get family of routines.

Backward Compatibility
If the extension supercedes an older extension, issues surrounding backward
compatibility with the older extension are documented in this section.

Note that these sections are merely established by convention. While the conventions for
OpenGL extension specifications are normally followed, extensions vary in how closely they stick
to the conventions. Generally, the more preliminary an extension is, the more loosely specified it
is. Hopefully after sufficient review and even implementation, the specification language and
format is improved to provide an unambiguous final specification.

4. Portably Using OpenGL Extensions

The advantage of using OpenGL extensions is getting access to cutting edge rendering
functionality so you application can achieve higher performance and higher quality rendering.
OpenGL extensions give you access to the latest features of the hottest new graphics hardware.

NVIDIA Corporation Advanced OpenGL Development

The problem with OpenGL extensions is that lots of OpenGL implementations, particularly older
implementations, will not support the extensions that you would like to use. When you write an
OpenGL application that uses extensions, you should make sure that your application still works
when the extension is not supported. At the very least your program should report that it requires
whatever extension is missing and exit without crashing.

The first step to using OpenGL extensions is to locate the copy of the <G/ gl . h> header file that
advertises the API interfaces for the extensions that you plan to use. Typically you can get this
from your OpenGL implementation vendor or OpenGL driver vendor. You could also get the API
interface prototypes and macros directly from the extension specifications, but getting the right
<@/ gl . h>from your OpenGL vendor is definitely the preferred way.

You will notice that <@/ gl . h> sets C preprocessor macros to indicate whether the header
advertises the interface of a particular extension or not. For example, the basic <@/ gl . h>
supplied with Visual C++ 4.2 has a section reading:

/* Extensions */

#defi ne GL_EXT_vertex_array
#defi ne G._W N_swap_hi nt

#defi ne GL_EXT_bgra

#define GL_EXT _paletted_texture
#define G._EXT _clip_disable

PR RERRE

These macros indicate that the header file advertises the above five extensions. The EXT_bgr a
extension lets you read and draw pixels in the Blue, Green, Red, Alpha component order as
opposed to OpenGL’s standard RGBA color component ordering. If you wanted to write a
program to use the EXT_bgr a extension, you could test that the extension is supported at
compile time like this:

#i fdef GL_EXT _bgra
gl DrawPi xel s(wi dt h, hei ght, G._BGRA EXT, G._UNSI GNED BYTE, pixels);
#endi f

When GL_EXT_bgr a is defined, you can expect to find the GL_BGRA EXT enumerant defined.
Note that if the EXT_bgr a extension were not supported, you would expect the gl Dr awPi xel s
line above to generate a compiler error because the base OpenGL standard does not define the
GL_BGRA _EXT enumerant.

So based on the extension name #def i nes in <G/ gl . h>, you can write your code so that it
can compile in the extension functionality if your compiler environment supports the extension’s
interfaces. The next problem is that even though your compiler environment may support the
extension’s interface at compile-time, at run-time, the target system where you run your
application may not support the extension. In the Win32 environment, different OpenGL ICD
drivers can support different OpenGL extensions depending on what the hardware and the
vendor’s ICD driver writers implement in the ICD driver.

Assuming that your application thread is made current to an OpenGL rendering context, the
following routine can be used to determine at run-time if the OpenGL implementation really
supports a particular extension:

#i ncl ude <@/ gl . h>

#i ncl ude <strength>

i nt

i sSExt ensi onSupported(const char *extension)

NVIDIA Corporation Advanced OpenGL Development

const GLubyte *extensions = NULL;
const GLubyte *start;
GLubyte *where, *term nator;

/* Extension names shoul d not have spaces. */

where = (GLubyte *) strchr(extension, ' ');
if (where || *extension == "\0")
return O;

extensions = gl Get String(G._EXTENSI ONS) ;

/* 1t takes a bit of care to be fool-proof about parsing the
Open@. extensions string. Don't be fool ed by sub-strings,
etc. */

start = extensions;

for (;;) {

where = (G.ubyte *) strstr((const char *) start, extension);

if (!where)
br eak;
term nator = where + strlen(extension);
if (where == start || *(where - 1) =="' ")
if (*termnator ==" ' || *terminator == '\0")
return 1,
start = term nator;
}
return O;

}

With the i sExt ensi onSuppor t ed routine, you can check if the current OpenGL rendering
context supports a given OpenGL extension. To make sure that the EXT_bgra extension is
supported before using it, you can do the following:

/* At context initialization. */
i nt hasBGRA = i sExtensi onSupported(“G_EXT_bgra”);

/* When trying to use EXT_bgra extension. */
#i fdef GL_EXT _bgra
i f (hasBGRA) {
gl DrawPi xel s(wi dt h, height, G._BGRA EXT, G__UNSI GNED BYTE, pixels);
} else
#endi f

/* No EXT_bgra so bail (or inplenent software workaround). */
fprintf(stderr, “Needs EXT_bgra extension!\n”);
exit(1);

}

Notice that if the EXT_bgr a extension is lacking at either run-time or compile-time, the code
above will detect the lack of EXT_bgr a support. Sure the code is a bit messy, but the code
above works. You can skip the compile-time check if you know what development environment
you are using and you do not expect to ever compile with a <GL/gl.h> that does not support the
extensions that your application uses. But the run-time check really should be performed since
who knows on what system your program ends up getting run on.

NVIDIA Corporation Advanced OpenGL Development

5. Win32’'s Scheme for Getting Extension Function Pointers

The example above for safely detecting and using the EXT_bgr a extension at run-time and
compile-time is straightforward because the EXT_bgr a simply adds two new enumerants
(GL_BGRA_EXT and G_._BGR_EXT) and does not require any new function pointers.

Using an extension that includes new function call entry-points is harder in Win32 because you
must first request the function pointer from the OpenGL ICD driver before you can call the
OpenGL function.

The EXT_poi nt _par anet er s extension provides eye-distance attenuation of OpenGL’s point
primitive. This extension is used by Id Software in Quake 2 when the extension is present for
rendering particle systems. With the extension, firing weapon and explosions are rendered as
huge clusters of OpenGL point primitives with OpenGL automatically adjusting the point size
based on the distance of the particles from the viewer. Closer particles appear bigger; particles in
the distance appear smaller. A particle whose size would be smaller than a pixel is automatically
faded based on its sub-pixel size. Anyone that wants to see the improvement this extension
brings to a 3D game should play Quake 2 on a PC with NVIDIA’s RIVA 128 graphics processor.
Start a gun battle and check out the particles!

The EXT_poi nt _par anet er s extension adds two new OpenGL entry points called

gl Poi nt Par amet er f EXT and gl Poi nt Par anet er f vEXT. These routines allow the
application to specify the attenuation equation parameters and fade threshold. The problem is
that because of the way Microsoft chose to support OpenGL extension functions, an OpenGL
application cannot simply link with these functions. The application must first use the

wgl Get Pr ocAddr ess’ routine to guery the function address and then call through the returned
address to call the extension function.

First, declare function prototype t ypedef s that match the extension’s entry points. For example:

#i fdef _WN32

typedef void (API ENTRY * PFNGLPO NTPARAMETERFEXTPROC)
(GLenum pname, G.float param;

typedef void (API ENTRY * PFNGLPO NTPARAMETERFVEXTPROC)
(GLenum pname, const G.fl oat *parans);

#endi f

Your <@/ gl . h> header file may already have these t ypedef s declared if your <G/ gl . h>
defines the GL_EXT_poi nt _par anet er s macro. Now declare global variables of the type of
these function prototype t ypedef s like this:

#i fdef _WN32

PFNGLPO NTPARAMETERFEXTPROC gl Poi nt Par anet er f EXT,;
PFNGLPO NTPARAMETERFVEXTPRCC gl Poi nt Par anet er f vEXT;
#endi f

The names above exactly match the extension’s function names. Once we use

wgl Get Pr ocAddr ess to assign these function variables the address of the OpenGL driver's
extension functions, we can call gl Poi nt Par anet er f EXT and gl Poi nt Par anet er f vEXT as
if they were normal functions. You pass wgl Get Pr ocAddr ess the name of the routine as an
ASCII string. Verify that the extension is supported and, if so, initialize the function variables like
this:

! Note that wgl Get Pr ocAddr ess was introduced to Windows 95 in OEM Service Release 2.

NVIDIA Corporation Advanced OpenGL Development

i nt hasPoi nt Parans = i sExt ensi onSupported(" G _EXT_poi nt _paraneters”);
#i fdef _WN32
i f (hasPoi nt Parans) {
gl Poi nt Par aret er f EXT = (PFNGLPO NTPARANMETERFEXTPROC)
wgl Get Pr ocAddr ess(" gl Poi nt Par amet er f EXT") ;
gl Poi nt Par anmet er f vEXT = (PFNGLPO NTPARAMETERFVEXTPRQOC)
wgl Get ProcAddr ess(" gl Poi nt Par anet er f vEXT") ;

}
#endi f
Note that before the code above is called, you should have a current OpenGL rendering context.

With the function variables properly initialized to the extension entry-points, you can use the
extension like this:

i f (hasPoi nt Parans) {
static Gfloat quadratic[3] ={ 0.25, 0.0, 1/60.0 };
gl Poi nt Par aret er f vEXT(GL_DI STANCE_ATTENUATI ON_EXT, quadratic);
gl Poi nt Par amet er f EXT(GL_PO NT_FADE_THRESHOLD_ SI ZE EXT, 1.0);

}

Be careful because the function returned by wgl Get Pr ocAddr ess is only be guaranteed to work
for the OpenGL rendering context that was current when wgl Get Pr ocAddr ess was called. If
you have multiple contexts that return different extension function addresses, keeping the
function addresses in global variables as shown above may create problems. You may need to
maintain distinct function addresses on a per-context basis. Specifically, the Microsoft
documentation for wgl Get Pr ocAddr ess warns:

The [Microsoft] OpenGL library supports multiple implementations of its functions.
Extension functions supported in one rendering context are not necessarily available in a
separate rendering context. Thus, for a given rendering context in an application, use the
function addresses returned by the wgl Get Pr ocAddr ess function only.

The spelling and the case of the extension function pointed to by string must be identical
to that of a function supported and implemented by OpenGL. Because extension
functions are not exported by OpenGL, you must use wgl Get Pr ocAddr ess to get the
addresses of vendor-specific extension functions.

The extension function addresses are unique for each pixel format. All rendering contexts
of a given pixel format share the same extension function addresses.

Win32's requirement that you use wgl Get Pr ocAddr ess is a real drag, but if you do everything
right, using OpenGL extensions works and gives you access to amazing new OpenGL features.

Amazing New OpenGL Features

So what OpenGL extensions are in the works to help OpenGL programmers write better high-
performance, high-quality games and other 3D applications?

Here we review seven OpenGL extensions that are certain to be useful for PC game and 3D
application programmers. The functionality of each extension will be briefly described in this
section, but the appendixes below provide the complete extension specifications for the seven
extensions. This provides you the opportunity to learn how to read and understand OpenGL
extension specifications for yourself.

NVIDIA Corporation Advanced OpenGL Development

The first three extensions represent already finalized, implemented, and available extensions.
The next four extensions are nearing finalization with at least one of the four (the multitexture
extension) being partially implemented today. Hardware support for all four of these preliminary
extensions will be available by the end of 1998.

i point burst =l E3

Figure 1 The pointburst demo uses the point parameters extension running on RIVA 128.
The points have exploded outward in a circle from the center of the ground plane. The
points closer to the viewer are large, while the far away points on the other side of the

explosion source are small.

The Point Parameters Extension

The above discussion has already explained the basic functionality provided by the

EXT_poi nt _par anet er s extension. The extension was originally proposed by Silicon
Graphics to address the needs of flight simulators for rendering point light sources such as
landing lights that attenuate their brightness based on the distance from the viewer. Id Software
also found the extension useful for rendering particle effects in Quake 2. In unextended OpenGL,
the point primitive’s size is controlled with the gl Poi nt Si ze routine. The point size is specified
as a constant number of pixels. Because gl Poi nt Si ze can not be called within gl Begi n and
gl End, it is difficult to render efficiently a batch of points of various sizes to simulate a particle
system such as water drops or exploding shrapnel.

What the extension provides is a means to attenuate the point size based on distance from the
viewer. The further away the point primitive is from the viewer the smaller it should be rendered.
If the point size becomes smaller than a pixel, the point’s alpha component is attenuated based
on the sub-pixel size to dim the point.

In addition to SGI's implementation of the extension for InfiniteReality, the extension has also
been implemented in NVIDIA’'s OpenGL ICD driver for RIVA 128 and Brian Paul has implemented
the extension in Mesa, the freeware implementation of the OpenGL programming interface. More
implementations of the point parameters extension are expected. Figure 1 shows a snap shot of
an OpenGL demo that uses the EXT_poi nt _par anet er s extension.

Appendix A is the EXT_poi nt _par anet er s specification.

NVIDIA Corporation Advanced OpenGL Development

The Paletted Texture Extension

Textures are typically 2D arrays of RGB or RGBA color values. For colorful textures with 8 bits of
precision per color component (3 or 4 bytes per texel), large textures can eat up quite a bit of
texture memory. The EXT_pal ett ed_t ext ur e enables a texture to be specified as a 2D array
of indices into a texture palette. Generally the indices are 8 bits per texel, but the texture palette
itself contains full 24-bit or 32-bit color values. For textures that use 256 or fewer unique colors, a
paletted texture can take up a lot less texture memory. Of course, the texture palette takes up
some space too though.

Microsoft proposed the paletted texture extension to reduce the amount of texture memory
needed by games and other 3D applications. Paletted textures also have the advantage that
colors in the palette can be edited to change effectively the colors within the texture.

Appendix B is the EXT_pal et t ed_t ext ur e specification.

The Shared Texture Palette Extension

The paletted texture extension provides a unique palette per texture, but this generality can make
the management of texture palettes in hardware difficult. Since there may be just a single texture
palette within the hardware rendering engine, the hardware may be continually loading the
hardware texture palette on texture binds because each paletted texture maintains its own
palette. By enabling the shared texture palette with gl Enabl e, all the paletted textures of the
rendering texture will share a single palette.

Appendix C is the EXT_shar ed_t ext ur e_pal et t e specification.

B =101 x| wl =101 x|

Figure 2 The right image uses an second rendering pass to combine a second texture with
the textured floor. The second textured rendering pass cycles through a set of shifting
caustic patterns to simulate the effect of underwater lighting. The left image shows the

scene without the underwater effect from the second texture pass. With unextended
OpenGL, the underwater effect requires two textured rendering passes, but with the
OpenGL multitexture extension on hardware such as NVIDIA’s multitexture-capable RIVA
TNT graphics processor, the scene can be rendered with a single rendering pass.

The Multitexture Extension

The SA@ S _nul titext ure extension provides the capability to specify multiple sets of texture
coordinates that look up into multiple textures. Multitexture support will redefine the performance

10

NVIDIA Corporation Advanced OpenGL Development

and quality levels seen in tomorrow’s 3D games. Extra rendering passes to blend in lightmaps,
as done by Quake 2, can be performed in a single rendering pass with the multitexture extension.
Multitexture is useful for all manner of cool effects, not just lightmaps. Figure 2 shows how
multitexturing can be used to simulate a dynamic underwater caustic effect.

The SA@ S _nul titexture extension is very likely to be renamed the ARB_mnul titexture
extension when it is finalized. The ARB prefix would indicate not just that multiple OpenGL
vendors intend to implement the extension (that is what EXT means) but that the OpenGL
Architectural Review Board, OpenGL’s governing body, considers the multitexture functionality to
be an important enough OpenGL capability to approve it as an ARB endorsed standard.

Appendix D is the preliminary S@ S_mul ti t ext ur e specification.

NVIDIA’s Multitexture Combiners Extension

One problem with the SG@ S_mul ti t ext ur e extension as specified is a straightforward, but
simplistic, means of combining each texture with the results from the previous texture stage (see
the ASCII diagram of this in the multitexture specification in Appendix D). Most of the vendors
involved in the discussions of multitexturing for OpenGL agree that this strict pipeline model is too
limiting for many interesting applications for multitexture. The difficulty is coming up with a more
general approach to combining the results from multiple textures that all the vendors can agree
on. Rather than argue, the vendors agreed to specify the initial simplistic pipeline model found in
the current multitexture specification and hopefully find common ground in a future extension
once multitexture hardware design was better understood.

NVIDIA has proposed its NVI DI A _ul ti t ext ur e_conbi ner s extension in expectation of the
flexible texture combining hardware found in NVIDIA’s RIVA TNT graphics processor. Clever
OpenGL programmers can use NVIDIA’s combiner extension to implement sophisticated texture-
based lighting models including bump mapping.

Appendix E is the preliminary NVI DI A_rul ti t ext ur e_conbi ner s specification.

The Secondary Color Extension

When texturing and lighting are both enabled, OpenGL performs per-vertex lighting calculations
that are then combined with the filtered texture result based on the texture environment. Before
OpenGL 1.2 introduced the ideal of a separate specular color, OpenGL, as originally specified,
computed the post-lighting per-vertex color by simply adding in the specular contribution as part
of the per-vertex lighting equation. The unfortunate result with this approach is that the specular
lighting contribution is typically modulated with the texture color. This means a bright specular
highlight can wind up blended into a dark surface texture. A bright specular highlight on a surface
appears “on top of” the surface texture. This is not very realistic. A more plausible lighting
equation would add the specular contribution after the texture environment. Think about a
specular highlight on an eight ball on a pool table. Even though the ball’s surface texture is black,
the highlight should still appear white.

OpenGL 1.2 provides for a primary color and a secondary color. When both lighting and
OpenGL 1.2's new GL_SEPARATE_SPECULAR_COLCR state are enabled, the primary color is the
result of the OpenGL'’s lighting equation excluding the specular contribution while the secondary
color is the equation’s specular contribution. Otherwise the secondary color is zero. The primary
color is merged in the texture environment, and then the secondary color is added to the texture
environment result. By adding the specular contribution after the texture environment, specular
highlights appear “on top of” the surface texture.

OpenGL 1.2 added support for a secondary color, but the secondary color is only updated
through OpenGL'’s lighting equations. The application programmer cannot directly assign the

11

NVIDIA Corporation Advanced OpenGL Development

specular color. Programmers who implement their own per-vertex lighting calculations (a
common requirement in game engines) have no easy way in the OpenGL 1.2 specification to
supply their own pre-computed per-vertex specular color. The secondary color extension adds
the capability to directly specify the secondary color on a per-vertex basis.

Appendix F is the EXT_secondary_col or specification.

The Fog Coordinate Extension

OpenGL specifies that fogging should be computed based on eye distance but also allows
implementations to use the fragment’s depth as an approximation of eye distance. The fog
coordinate extension allows OpenGL applications to substitute OpenGL'’s eye distance (or depth
based approximation of eye distance) with an explicitly specified fog coordinate. The fog
coordinate is a single coordinate that can be specified per-vertex. Game programmers often like
to specify the fog coordinate explicitly, either because they want better control of the fog equation
or they intend to use the hardware’s fog stage for some other devious purpose.

Support for an application settable per-vertex secondary color and fog coordinate are responses
from feedback from game developers. Because Direct3D Immediate Mode supported explicit
control of these rasterization parameters and therefore hardware designed for Direct3D already
had the fundamental support for specifying these parameters on a per-vertex basis, it made
sense to expose explicit control of these rasterization parameters through OpenGL extensions.

Both the fog coordinate and the secondary color can be passed both through immediate mode
routines (gl Secondar yCol or 3f EXT and gl FogCoor df EXT) as well as through vertex arrays.

Conclusions

OpenGL continues to evolve its support for 3D game and applications programmers. OpenGL’s
extension mechanism provides a way to keep the simplicity of OpenGL’s basic programming
model while integrating innovative hardware capabilities into the API.

Compile-time and run-time checking for OpenGL extension support is necessary for robust
OpenGL programs that use OpenGL extensions. Win32 makes accessing OpenGL extension
functions more difficult because of the requirement to retrieve function pointers with
wglGetProcAddress, but once the function entry-point addresses are retrieved, OpenGL
extensions are easy to use with Win32.

The seven OpenGL extensions described above give OpenGL programmers new capabilities to
control point size on a dynamic basis, to conserve texture memory usage, to utilize cutting-edge
multitexture hardware, and gain explicit control over per-vertex parameters such as the specular
color and fog coordinate.

The key to exploiting OpenGL extensions is reading and understanding the OpenGL extension
specifications. An extension’s specification is the definitive word on how a given extension
should work. Review the seven extension specifications in the appendixes that follow and look
on the Web for the specifications to scores of other available OpenGL extensions.

12

NVIDIA Corporation Advanced OpenGL Development

A. EXT_point_parameters Specification

Nanme
EXT_poi nt _paraneters

Name Strings
GL_EXT_poi nt _paraneters

Ver si on
$Date: 1997/08/21 21:26:36 $ $Revision: 1.6 $

Number
54

Dependenci es
SA S nultisanple affects the definition of this extension.

Overvi ew
Thi s extension supports additional geonetric characteristics of points. It
can be used to render particles or tiny light sources, commonly referred
as "Light points".

The raster brightness of a point is a function of the point area, point
color, point transparency, and the response of the display's electron gun
and phosphor. The point area and the point transparency are derived fromthe
point size, currently provided with the <size> paraneter of gl PointSize.

The primary notivation is to allow the size of a point to be affected by
di stance attenuation. \Wen distance attenuation has an effect, the final
poi nt size decreases as the distance of the point fromthe eye increases.

The secondary notivation is a mean to control the mapping fromthe point
size to the raster point area and point transparency. This is done in order
to increase the dynanmic range of the raster brightness of points. In other
words, the al pha conponent of a point may be decreased (and its transparency
increased) as its area shrinks bel ow a defined threshol d.

This extension defines a derived point size to be closely related to point
bri ghtness. The brightness of a point is given by:
dist_atten(d) = -------------------
a+b*d+c* d2
bri ght ness(Pe) = Brightness * dist_atten(|Pe|)
where 'Pe' is the point in eye coordinates, and 'Brightness' is sone initial
val ue proportional to the square of the size provided with gl PointSize. Here
we simplify the raster brightness to be a function of the rasterized point
area and poi nt transparency.
bri ght ness(Pe) bri ght ness(Pe) >= Threshol d_Area
area(Pe) =
Threshol d_Ar ea O herwi se
factor(Pe) = brightness(Pe)/ Threshol d_Area
al pha(Pe) = Al pha * factor(Pe)
where ' Al pha' conmes with the point color (possibly nodified by lighting).

"Threshol d_Area' above is in area units. Thus, it is proportional to the
square of the threshold provided by the programer through this extension.

The new poi nt size derivation method applies to all points, while the
threshold applies to nultisanple points only.

| ssues
* Does point al pha nodification affect the current color ?

13

NVIDIA Corporation Advanced OpenGL Development

No.

* Do we need a special function gl Get Poi nt ParaneterfvEXT, or get by with
gl Get Fl oat ?
No.

* If alpha is 0, then we could toss the point before it reaches the
fragnment stage.

No. This can be achieved with enabling the alpha test with reference of
0 and function of LEQUAL.

* Do we need a disable for applying the threshold ? The default threshold
value is 1.0. It is applied even if the point size is constant.

If the default threshold is not overridden, the area of multisanple
points with provided constant size of less than 1.0, is napped to 1.0,
whi l e the al pha component is nodul ated accordingly, to conmpensate for
the larger area. For nultisanple points this is not a problem as there
are no relevant applications yet. As nmentioned above, the threshol d does
not apply to alias or antialias points.

The alternative is to have a disable of threshold application, and state
that threshold (if not disabled) applies to non antialias points only
(that is, alias and nmultisanple points).
The behavi or wi thout an enabl e/ di sabl e | ooks fine.

* Future extensions (to the extension)
1. GL_PO NT_FADE_ALPHA CLAMP_EXT
When the derived point size is larger than the threshold size defined by
the GL_PO NT_FADE_THRESHOLD S| ZE_EXT paraneter, it might be desired to
clanp the conputed al pha to a mninmumvalue, in order to keep the point

visible. In this case the formula bel ow change:

factor = (derived_size/threshol d)”*2

factor clanp <= factor
cl anped_val ue =
cl anp factor < clanp
1.0 derived_size >= threshold
al pha *=
cl anped_val ue O herwi se

where clanmp is defined by the GL_PO NT_FADE_ALPHA CLAMP_EXT new par anet er.

New Procedures and Functions
voi d gl Poi nt Paranet erf EXT (GLenum pnane, GLfloat param);
voi d gl Poi nt Paranet erf vEXT (GLenum pnane, CGLfloat *params);

New Tokens
Accepted by the <pnane> paraneter of gl Poi ntParaneterfEXT, and the <pnane>
of gl Get:

GL_PO NT_SI ZE_M N_EXT
GL_PO NT_SI ZE_MAX_EXT
GL_PO NT_FADE_THRESHOLD Sl ZE_EXT

Accepted by the <pnane> paraneter of gl PointParameterfvEXT, and the <pnane>

of gl Get:
GL_PO NT_SI ZE_M N_EXT 0x8126
GL_PO NT_SI ZE_MAX_EXT 0x8127
GL_PO NT_FADE_THRESHOLD_SI ZE_EXT 0x8128
GL_DI STANCE_ATTENUATI ON_EXT 0x8129

Additions to Chapter 2 of the 1.0 Specification (OpenG. Operation)
None

14

NVIDIA Corporation Advanced OpenGL Development

Additions to Chapter 3 of the 1.0 Specification (Rasterization)

Addi
and

Addi

Addi

Addi

Al'l paraneters of the gl PointParaneterfEXT and gl Poi nt Par anet er f vEXT
functions set various values applied to point rendering. The derived point
size is defined to be the <size> provided with gl PointSize nodul ated with a
di stance attenuation factor.

The paraneters GL_PO NT_SI ZE_M N_EXT and GL_PO NT_SI ZE_MAX_EXT si nmply
define an upper and | ower bounds respectively on the derived point size.

The above paraneters affect non-nultisanple points as well as nultisanple
points, while the G._PO NT_FADE_THRESHOLD_SI ZE EXT paraneter, has no effect
on non multisanple points. If the derived point size is larger than

the threshol d size defined by the GL_PO NT_FADE_THRESHOLD_SI ZE_EXT
paraneter, the derived point size is used as the dianmeter of the rasterized
poi nt, and the al pha conponent is intact. Qtherw se, the threshold size is
set to be the diameter of the rasterized point, while the al pha conponent is
nmodul at ed accordingly, to conmpensate for the |larger area.

The di stance attenuation function coefficients, nanely a, b, and c in:
dist_atten(d) = -------------------
a+b*d+c* d2

are defined by the <pnane> paraneter G._DI STANCE_ATTENUATI ON_EXT of the
function gl Point ParaneterfvEXT. By default a =1, b =0, and ¢ = 0.

Let 'size' be the point size provided with glPointSize, let '"dist' be the
di stance of the point fromthe eye, and let 'threshold be the threshold size
defined by the GL_PO NT_FADE_THRESHOLD S| ZE par anet er of
gl Poi nt Par amet er f EXT. The derived point size is given by:
derived_size = size * sqrt(dist_atten(dist))
Not e that when default values are used, the above fornula reduces to:
derived_size = size
the dianmeter of the rasterized point is given by:
derived_size derived_size >= threshold
di ameter =
t hreshol d G herw se
The al pha of a point is calculated to allow the fading of points instead of
shrinking them past a defined threshold size. The al pha conponent of the
rasterized point is given by:
1 derived_size >= threshold
al pha *=
(derived_size/threshol d)”*2 O herwi se

The threshol d defined by GL_PO NT_FADE_THRESHOLD S| ZE_EXT is not cl anped
to the m ni mum and mexi mum poi nt si zes.

Points do not affect the current color.

Thi s extension doesn't change the feedback or selection behavior of points.
tions to Chapter 4 of the 1.0 Specification (Per-Fragnent Operations

the Franebuffer)

None

tions to Chapter 5 of the 1.0 Specification (Special Functions)
None

tions to Chapter 6 of the 1.0 Specification (State and State Requests)
None

tions to the GLX Specification

15

NVIDIA Corporation Advanced OpenGL Development

None

Dependenci es on SA S _mul ti sanpl e
If SG@S nmultisanple is not inplenented, then the references to
mul ti sanpl e points are invalid, and should be ignored.

Errors
I NVALI D_ENUM i s generated if PointParaneterf EXT paraneter <pname> is not
GL_PO NT_SI ZE_M N_EXT, G._PO NT_SI ZE_MAX_EXT, or
GL_PO NT_FADE_THRESHOLD S| ZE_EXT.

I NVALI D_ENUM i s generated if PointParaneterfvEXT paraneter <pname> is
not GL_PO NT_SI ZE_M N_EXT, GL_PO NT_SI ZE_MAX_EXT,
GL_PO NT_FADE_THRESHOLD_SI ZE_EXT, or GL_DI STANCE_ATTENUATI ON_EXT

I NVALI D_VALUE is generated when val ues are out of range according to:

<pnane> valid range
GL_PO NT_SI ZE_M N_EXT >= 0

GL_PO NT_SI ZE_MAX_EXT >= 0

GL_PO NT_FADE_THRESHOLD_ S| ZE_EXT >= 0

| ssues

New St at e
Get Val ue Get Command Type Initial Value Attribute
GL_PO NT_SI ZE_M N_EXT Get Fl oat v R 0 poi nt
GL_PO NT_SI ZE_MAX_EXT Cet Fl oat v R M poi nt
GL_PO NT_FADE_THRESHOLD_ S| ZE_EXT Get Fl oat v R 1 poi nt
GL_Dl STANCE_ATTENUATI ON_EXT Cet Fl oat v 3xR (1,0,0) poi nt

Mis the largest avail abl e point size.

New | npl enent ati on Dependent State
None

Backward Compatibility
Thi s extension replaces SGA S _point_paranmeters. The procedures, tokens,
and nanme strings now refer to EXT instead of SAS. Enunerant val ues are
unchanged. SG inplenmentations which previously provided this
functionality should support both forms of the extension.

16

NVIDIA Corporation Advanced OpenGL Development

B. Paletted Texture Specification

Nanme
EXT_pal etted_texture

Name Strings
GL_EXT_pal etted_texture

Ver si on
$Date: 1997/06/12 01:07:42 $ $Revision: 1.2 $

Number
78

Dependenci es

GL_EXT_pal etted_texture shares routi nes and enunmerants with

GL_SA _color_table with the mnor nodification that EXT replaces SG .

In all other ways these calls should function in the same nanner and the

enunerant val ues should be identical. The portions of

GL_SAd _color_table that are used are:
Col or Tabl eSG, GCet Col or Tabl eSG, GCet Col or Tabl ePar aneteri vSG ,
Cet Col or Tabl ePar anet er f vSG .
COLOR_TABLE_FORMAT_SAE, COLOR TABLE W DTH Sd,
COLOR_TABLE_RED SI ZE_ SGE@, COLOR _TABLE_GREEN SI ZE _Sd ,
COLOR_TABLE_BLUE_SI ZE_SG, COLOR _TABLE_ALPHA S| ZE_SG
COLOR_TABLE_LUM NANCE_SI ZE_SG, COLOR _TABLE_I NTENSI TY_SI ZE_SG .

Portions of GL_SG _col or_table which are not used in
GL_EXT_paletted_texture are:
CopyCol or Tabl eSA, Col or Tabl ePar aneteri vSd ,
Col or Tabl ePar anet er f vSG .
COLOR_TABLE_SGE, POST_CONVOLUTI ON_COLOR _TABLE_SQ ,
POST_COLOR_MATRI X_COLOR_TABLE_SG, PROXY_COLOR TABLE Sd ,
PROXY_POST_CONVOLUTI ON_COLOR_TABLE_Sd ,
PROXY_POST_COLOR_MATRI X_COLOR_TABLE_SG, COLOR TABLE_SCALE Sd ,
COLOR_TABLE_BI AS_SG .

EXT_pal etted_texture can be used in conjunction with EXT_texture3D.
EXT_pal etted_texture nodifies Texl nage3DEXT to accept pal etted inmage
data and al |l ows TEXTURE_3D_EXT and PROXY_TEXTURE_3D EXT to be used a
targets in the color table routines. |f EXT_texture3D is unsupported
then references to 3D texture support in this spec are invalid and
shoul d be i gnored.

Overvi ew
EXT_pal etted_texture defines new texture formats and new calls to
support the use of paletted textures in OpenG.. A paletted texture is
defined by giving both a palette of colors and a set of inmage data which
is conposed of indices into the palette. The paletted texture cannot
function properly w thout both pieces of information so it increases the
work required to define a texture. This is offset by the fact that the
overall anpunt of texture data can be reduced dramatically by factoring
redundant information out of the |ogical view of the texture and placing
it inthe palette.

Pal etted textures provi de several advantages over full-color textures:

* As nmentioned above, the anpunt of data required to define a

texture can be greatly reduced over what would be needed for full-color
specification. For exanple, consider a source texture that has only 256
distinct colors in a 256 by 256 pixel grid. Full-color representation
requires three bytes per pixel, taking 192K of texture data. By putting
the distinct colors in a palette only eight bits are required per pixel,
reducing the 192K to 64K plus 768 bytes for the palette. Now add an

al pha channel to the texture. The full-color representation increases
by 64K while the paletted version would only increase by 256 bytes.

This reduction in space required is particularly inportant for hardware
accel erators where texture space is |imted.

17

NVIDIA Corporation Advanced OpenGL Development

* Paletted textures allow easy reuse of texture data for immges

which require many sinmilar but slightly different col ored objects.
Consider a driving simulation with heavy traffic on the road. Many of
the cars will be simlar but with different color schenmes. |If
full-color textures are used a separate texture would be needed for each
color schene, while paletted textures allow the same basic index data to
be reused for each car, with a different palette to change the final

col ors.

* Paletted textures also allow use of all the palette tricks

devel oped for paletted displays. Sinple animtion can be done, al ong
with strobing, glowi ng and other palette-cycling effects. Al of these
techni ques can enhance the visual richness of a scene with very little
dat a.

Procedures and Functions
voi d Col or Tabl eEXT(

enum t ar get ,

enum i nt er nal For mat ,

si zei width,

enum f or mat ,

enum type,

const void *data);

voi d Col or SubTabl eEXT(
enum t ar get ,
si zei start,
si zei count,
enum f or mat ,
enum type,
const void *data);

voi d Get Col or Tabl eEXT(
enum t ar get,
enum f or nat,
enum type,
voi d *data);

voi d Get Col or Tabl ePar anet eri VEXT(
enum t ar get,
enum pnane,
int *parans);

voi d Get Col or Tabl ePar anet er f vEXT(
enum t ar get,
enum pnane,
float *parans);

Tokens
Accepted by the internal format parameter of Texl magelD, Texl nage2D and
Tex| mage3DEXT:

COLOR _| NDEX1_EXT 0x80E2
COLOR _| NDEX2_EXT 0x80E3
COLOR _| NDEX4_EXT Ox80E4
COLOR _| NDEX8_EXT 0x80E5
COLOR | NDEX12_EXT 0x80E6
COLOR _| NDEX16_EXT 0x80E7

Accepted by the pnane paraneter of Get Col or Tabl eParanet eri vEXT and
Cet Col or Tabl ePar anet er f vVEXT:

COLOR_TABLE_FORMAT_EXT 0x80D8
COLOR_TABLE_W DTH_EXT 0x80D9
COLOR_TABLE_RED_SI ZE_EXT 0x80DA
COLOR_TABLE_GREEN_SI ZE_EXT 0x80DB
COLOR_TABLE_BLUE_SI ZE_EXT 0x80DC
COLOR_TABLE_ALPHA S| ZE_EXT 0x80DD

COLOR_TABLE_LUM NANCE_SI ZE_EXT 0x80DE
COLOR_TABLE_I NTENSI TY_SI ZE_EXT Ox80DF

Accepted by the val ue paraneter of GetTexLevel Paraneter{if}v:

18

NVIDIA Corporation Advanced OpenGL Development

TEXTURE_I NDEX_SI ZE_EXT 0x80ED

Additions to Chapter 2 of the GL Specification (OpenG. Operation)
None

Additions to Chapter 3 of the GL Specification (Rasterization)

Section 3.6.4, 'Pixel Transfer Operations,' subsection 'Color |ndex
Lookup, '

Point two is nodified from'The groups will be | oaded as an

image into texture menory' to 'The groups will be |oaded as an inmage
into texture menory and the internal format paranmeter is not one of the
color index formats fromtable 3.8."

Section 3.8, 'Texturing,' subsection 'Texture |mage Specification' is
nodi fied as follows:

The portion of the first paragraph discussing interpretation of fornat,
type and data is split fromthe portion discussing target, wi dth and
height. The target, w dth and hei ght section now ends with the sentence
"Argunents width and hei ght specify the imge's width and height.'

The format, type and data section is noved under a subheader 'Direct

Col or Texture Fornmats' and begins with '"If internalformat is not one of
the color index formats fromtable 3.8,' and continues with the existing
text through the internal format discussion.

After that section, a new section 'Paletted Texture Fornats' has the

text:
If format is given as COLOR I NDEX then the inmmge data is
conposed of integer values representing indices into a table of colors
rather than colors thenselves. |If internalformat is given as one of the
color index formats fromtable 3.8 then the texture will be stored
internally as indices rather than undergoi ng i ndex-to- RGBA mappi ng as
woul d previously have occurred. In this case the only valid values for
type are BYTE, UNSI GNED BYTE, SHORT, UNSI GNED SHORT, | NT and
UNSI GNED_| NT.

The i mage data is unpacked from nmenory exactly as for a

Dr awPi xel s conmmand with format of COLOR_|INDEX for a context in color
index node. The data is then stored in an internal format derived from
internalformat. In this case the only |egal values of internalformt
are COLOR_| NDEX1_EXT, COLOR_| NDEX2_EXT, COLOR_| NDEX4_EXT,

COLOR_| NDEX8_EXT, COLOR_| NDEX12_EXT and COLOR_| NDEX16_EXT and the
internal conponent resolution is picked according to the index
resolution specified by internalformat. Any excess precision in the
data is silently truncated to fit in the internal component precision.

An application can determ ne whether a particul ar

i mpl enentation supports a particular paletted fornat (or any pal etted
formats at all) by attenpting to use the paletted format with a proxy
target. TEXTURE_ | NDEX SIZE EXT will be zero if the inplementation
cannot support the texture as given.

An application can determ ne an inplenmentation's desired

format for a particular paletted texture by making a Texlmage call with
COLOR_I NDEX as the internalformat, in which case target nust be a proxy
target. After the call the application can query

TEXTURE_|I NTERNAL_FORMAT to determ ne what internal format the

i mpl enent ati on suggests for the texture image paraneters.

TEXTURE_I NDEX_SI ZE_EXT can be queried after such a call to determ ne the
suggested i ndex resolution nunerically. The index resolution suggested
by the inplenentation does not have to be as large as the input data
precision. The resolution may al so be zero if the inplenentation is
unabl e to support any paletted format for the given texture image.

Table 3.8 should be augnmented with a colum titled 'Index bits.' Al
existing formats have zero index bits. The following formats are added
with zeroes in all existing colums:

Nane I ndex bits

19

NVIDIA Corporation Advanced OpenGL Development

COLOR_| NDEX1_EXT 1
COLOR_| NDEX2_EXT 2
COLOR_| NDEX4_EXT 4
COLOR_| NDEX8_EXT 8
COLOR_| NDEX12_EXT 12
COLOR_| NDEX16_EXT 16

At the end of the discussion of level the follow ng text should be

added
Al'l m pmapping | evels share the same palette. |If levels
are created with different precision indices then their internal formats
will not match and the texture will be inconsistent, as discussed above

I'n the discussion of internalformat for CopyTexl mage{12}D, at end of the
sentence specifying that 1, 2, 3 and 4 are illegal there should also be
a nention that paletted internal format values are illegal

At the end of the width, height, format, type and data section under
TexSubl mage there should be an additional sentence

If the target texture has an color index internal fornmat
then format may only be COLOR | NDEX

At the end of the first paragraph describing TexSubl mage and
CopyTexSubl nage the followi ng sentence should be added

If the target of a CopyTexSublmage is a paletted texture
i mge then | NVALI D_OPERATION i s returned

After the Alternate Inage Specification Commands section, a new 'Palette
Speci fi cati on Cormands' section should be added

Pal etted textures require palette information to
translate indices into full colors. The comand

voi d Col or Tabl eEXT(enum target, enuminternal format, sizei width,

enum format, enumtype, const void *data)

is used to specify the format and size of the palette
for paletted textures. target specifies which texture is to have its
pal ette changed and may be one of TEXTURE_1D, TEXTURE_ 2D,
PROXY_TEXTURE_1D, PROXY_TEXTURE_ 2D, TEXTURE_3D EXT or
PROXY_TEXTURE_3D EXT. internal format specifies the desired format and
resolution of the palette when in its internal form internalformt can
be any of the non-index values | egal for Texlmage internalformat
al t hough i npl enentations are not required to support palettes of al
possible formats. w dth controls the size of the palette and nmust be a
power of two greater than or equal to one. format and type specify the
nurmber of conponents and type of the data given by data. format can be
any of the formats legal for DrawPi xels although inplenentations are not
required to support all possible fornats. type can be any of the types
| egal for DrawPi xel s except GL_BI TMAP

Data is taken fromnenory and converted just as if each

palette entry were a single pixel of a 1D texture. Pixel unpacking and
transfer nmodes apply just as with texture data. After unpacking and
conversion the data is translated into a internal format that matches
the given fornat as closely as possible. An inplenentation does not,
however, have a responsibility to support nore than one precision for
the base fornats.

If the palette's width is greater than the range of

the color indices in the texture data then sone of the palettes entries
will be unused. |If the palette's width is less than the range of the
color indices in the texture data then the nost-significant bits of the
texture data are ignored and only the appropriate nunber of bits of the
index are used when accessing the palette

Specifying a proxy target causes the proxy texture's

palette to be resized and its paranmeters set but no data is transferred
or accessed. If an inplenentation cannot handl e the pal ette data given
in the call then the color table wi dth and conponent resol utions are set

20

NVIDIA Corporation Advanced OpenGL Development

to zero.

Portions of the current palette can be replaced with
voi d Col or SubTabl eEXT(enum target, sizei start, sizei count,

enum format, enumtype, const void *data);
target can be any of the non-proxy values legal for
Col or Tabl eEXT. start and count control which entries of the palette are
changed out of the range allowed by the internal format used for the
palette indices. count is silently clanped so that all nodified entries
all within the legal range. format and type can be any of the val ues
I egal for Col orTabl eEXT. The data is treated as a 1D texture just as in
Col or Tabl eEXT.

In the 'Texture State and Proxy State' section the sentence fragnent
begi nni ng 'six integer val ues describing the resolutions...' should be
changed to refer to seven integer values, with the seventh being the

i ndex resol ution.

Pal ette data should be added in as a third category of texture state.
After the discussion of properties, the followi ng shoul d be added:

Next there is the texture palette. Al textures have a

palette, even if their internal format is not color index. A texture's
palette is initially one RGBA element with all four components set to
1.0.

The sentence mentioning that proxies do not have i mage data or
properties should be extended with 'or palettes.'

The sentence beginning 'If the texture array is too |large' describing
the effects of proxy failure should change to read:

If the inplenentation is unable to handle the texture

imge data the proxy w dth, height, border wi dth and conponent
resolutions are set to zero. This situation can occur when the texture
array is too large or an unsupported pal etted format was requested.

Additions to Chapter 4 of the GL Specification (Per-Fragment Operations
and the Franebuffer)
None

Additions to Chapter 5 of the GL Specification (Special Functions)
None

Additions to Chapter 6 of the GL Specification (State and State
Request s)

In the section on Cet Texl nage, the sentence saying ' The conponents are
assigned anong R, G B and A according to' should be changed to be

If the internal fornmat of the texture is not a color

index format then the conponents are assigned anong R, G B, and A
according to Table 6.1. Specifying COLOR_INDEX for format in this case
will generate the error INVALID ENUM If the internal format of the
texture is color index then the conponents are handled in one of two
ways dependi ng on the value of format. |If format is not COLOR | NDEX,
the texture's indices are passed through the texture's palette and the
resulting conponents are assigned anrong R, G B, and A according to
Table 6.1. If format is COLOR INDEX then the data is treated as single
conponents and the palette indices are returned. Conponents are taken
starting...

Fol | owi ng the Get Texl mage section there should be a new section:
Get Col or Tabl eEXT is used to get the current texture
pal ette.

voi d Get Col or Tabl eEXT(enum target, enum format, enumtype, void *data);

Get Col or Tabl eEXT retrieves the texture palette of the
texture given by target. target can be any of the non-proxy targets

21

NVIDIA Corporation Advanced OpenGL Development

valid for Col orTabl eEXT. format and type are interpreted just as for
Col or Tabl eEXT. Al textures have a palette by default so

Get Col or Tabl eEXT will al ways be able to return data even if the internal
format of the texture is not a color index fornat.

Pal ette paraneters can be retrieved using
voi d Get Col or Tabl ePar anmet eri vEXT(enum target, enum pnane, int *parans);
voi d Get Col or Tabl ePar anmet er f vEXT(enum t arget, enum pnane, float *parans);
target specifies the texture being queried and pnane
controls which paranmeter value is returned. Data is returned in the
menmory pointed to by parans.

Queryi ng COLOR _TABLE _FORVAT_EXT returns the internal

format requested by the nost recent Col or Tabl eEXT call or the default.
COLOR _TABLE_W DTH_EXT returns the width of the current palette.
COLOR_TABLE_RED_SI ZE_EXT, COLOR_TABLE_GREEN_SI ZE_EXT,
COLOR_TABLE_BLUE_SI ZE_EXT and COLOR TABLE_ALPHA SI ZE_EXT return the
actual size of the conponents used to store the palette data internally,
not the size requested when the palette was defined.

Table 6.11, "Texture Cbjects" should have a |ine appended for
TEXTURE_| NDEX_SI ZE_EXT:

TEXTURE_I NDEX_SI ZE_EXT n x Z+ GetTexLevel Paraneter 0 xD texture image i's index resolution 3.8 -

Revi sion History

Oiginal draft, revision 0.5, Decenber 20, 1995 (drewb) Created

M nor revisions and clarifications, revision 0.6, January 2, 1996 (drewb)
Repl aced all request-for-conment blocks with final text
based on inpl ementati on.

M nor revisions and clarifications, revision 0.7, February 5, 1996 (drewb)
Specified the state of the palette color information
when existing data is replaced by new data.
Clarified behavior of TexPalette on inconsistent textures.

Maj or changes due to ARB review, revision 0.8, March 1, 1996 (drewb)
Swi t ched from usi ng TexPal ett eEXT and Get TexPal ett eEXT
to using SGA's Col or Tabl eEXT routines. Added Col or SubTabl eEXT so
equi val ent functionality is avail able.
Al'l owed proxies in all targets.
Changed PALETTE?_EXT val ues to COLOR_|I NDEX?_EXT. Added
support for one and two bit palettes. Renpved PALETTE_| NDEX_EXT in
favor of COLOR_| NDEX.

Decoupl ed palette size fromtexture data type. Palette
size is controlled only by Col or Tabl eEXT.

Changes due to ARB review, revision 1.0, May 23, 1997 (drewb)
Ment i oned texture3D.

Defi ned TEXTURE_| NDEX_SI ZE_EXT.

Al'l owed i nmpl enentations to return an index size of zero to indicate
no support for a particular format.

Al'l owed usage of GL_COLOR_INDEX as a generic format in
proxy queries for determning an optinmal index size for a particular
texture.

Di sal | owed CopyTexl| nage and CopyTexSubl nage to paletted formats.

Del eted nmention of index transfer operations during GetTexlnage with
pal etted formats.

22

NVIDIA Corporation Advanced OpenGL Development

C.

Nane

Nane

Ver s

Numb

Depe

Over

I ssu

Shared Texture Palette

EXT_shared_texture_pal ette

Strings
GL_EXT_shared_texture_palette
ion
$Date: 1997/09/10 23:23:04 $ $Revision: 1.2 $

er
141

ndenci es

EXT_paletted_texture is required.
Vi ew

EXT_shared_texture_pal ette defines a shared texture palette which nmay be
used in place of the texture object palettes provided by

EXT_pal etted_texture. This is useful for rapidly changing a palette
common to many textures, rather than having to reload the new palette
for each texture. The extension acts as a switch, causing all | ookups
that would normally be done on the texture's palette to instead use the
shared palette

es

* Do we want to use a new <target> to ColorTable to specify the
shared palette, or can we just infer the new target fromthe
correspondi ng Enabl e?

* A future extension of larger scope might define a "texture palette
object" and bind these objects to texture objects dynanically, rather
than maeki ng palettes part of the texture object state as the current
EXT_pal etted_texture spec does

* Should there be separate shared palettes for 1D, 2D, and 3D
textures?

Probably not; palette |ookups have nothing to do with the
dinensionality of the texture. If nultiple shared palettes
are needed, we shoul d define palette objects

* There's no proxy mechani smfor checking if a shared palette can
be defined with the requested paraneters. WII it suffice to
assune that if a texture palette can be defined, so can a shared
palette with the same paraneters?

* The changes to the spec are based on changes al ready made for
EXT_pal etted_texture, which nmeans that all three documents nust
be referred to. This is quite difficult to read

* The changes to section 3.8.6, defining how shared pal ettes are
enabl ed and di sabl ed, m ght be better placed in section 3.8.1
However, the underlying EXT_pal etted_texture does not appear to
modi fy these sections to define exactly how pal ette | ookups are
done, and it's not clear where to put the changes

Procedures and Functi ons
None

Tokens

Accepted by the <pnane> paraneters of GetBool eanv, GCetlntegerv,
Get Fl oatv, GetDoubl ev, |sEnabl ed, Enable, Disable, ColorTabl eEXT

Col or SubTabl eEXT, Get Col or Tabl eEXT, Get Col or Tabl ePar anet eri VEXT, and
Get Col or Tabl ePar anet erfd EXT

SHARED TEXTURE_PALETTE_EXT 0x81FB

23

NVIDIA Corporation Advanced OpenGL Development

Additions to Chapter 2 of the 1.1 Specification (OpenG. Operation)
None

Additions to Chapter 3 of the 1.1 Specification (Rasterization)
Section 3.8, 'Texturing,' subsection 'Texture |mage Specification' is
nodi fied as follows:

In the Palette Specification Cormands section, the sentence
begi nning 'target specifies which texture is to' should be changed
to:

target specifies the texture palette or shared palette to be
changed, and may be one of TEXTURE_1D, TEXTURE_2D,
PROXY_TEXTURE_1D, PROXY_TEXTURE 2D, TEXTURE_3D_EXT,
PROXY_TEXTURE_3D_EXT, or SHARED TEXTURE_PALETTE_EXT.

In the 'Texture State and Proxy State' section, the sentence
beginning 'A texture's palette is initially...' should be changed
to:

There is al so a shared palette not associated with any texture, which
may override a texture palette. Al palettes are initially...

Section 3.8.6, 'Texture Application' is nodified by appendi ng the
fol | ow ng:

Use of the shared texture palette is enabled or disabled using the
generic Enable or Disable conmmands, respectively, with the synbolic
const ant SHARED TEXTURE_PALETTE_EXT.

The required state is one bit indicating whether the shared palette is
enabl ed or disabled. In the initial state, the shared palettes is
di sabl ed.

Additions to Chapter 4 of the 1.1 Specification (Per-Fragment Operations
and the Frame buffer)

Additions to Chapter 5 of the 1.1 Specification (Special Functions)

Additions to Chapter 6 of the 1.1 Specification (State and State Requests)
In the section on Cet Texl nage, the sentence beginning 'If format is
not COLOR_I NDEX..."' should be changed to:

If format is not COLOR I NDEX, the texture's indices are passed
through the texture's palette, or the shared palette if one is
enabl ed, and the resulting conponents are assigned amrong R, G B,
and A according to Table 6. 1.

In the GetCol orTabl e section, the first sentence of the second
par agraph shoul d be changed to read:

Get Col or Tabl eEXT retrieves the texture palette or shared palette
given by target.

The first sentence of the third paragraph should be changed to read:

Pal ette paraneters can be retrieved using
voi d Get Col or Tabl ePar anmet eri vEXT(enum target, enum pnane, int *parans);
voi d Get Col or Tabl ePar anmet er f vEXT(enum t arget, enum pnane, float *parans);
target specifies the texture palette or shared palette being
queried and pnane controls which paranmeter value is returned.

Additions to the GLX Specification
None

New St at e
Get Val ue Get Command Type Initial Value Attribute

SHARED TEXTURE_PALETTE_EXT
| sEnabl ed B Fal se t exture/ enabl e

24

NVIDIA Corporation Advanced OpenGL Development

New | npl ement ati on Dependent State
None

25

NVIDIA Corporation Advanced OpenGL Development

D. Multitexture Specification

XXX — Prelimnary

Nanme
SA S nultitexture

Name Strings
GL_SA S nmultitexture

Ver si on
$Date: 1998/ 04/ 10 06:42:49 $ $Revision: 1.15 $

Number
116

Dependenci es
OpenG 1.1 is required
EXT_texture3D affects the definition of this extension.
SG S texture4D affects the definition of this extension.
SGA S texture_border_clanp affects the definition of this extension.
SG _texture_color_table affects the definition of this extension.
SG S texture_edge_clanp affects the definition of this extension.
SGA X_texture_add_env affects the definition of this extension.
SA S texture_filter4 affects the definition of this extension.
SA S texture_lod affects the definition of this extension.
SGA X_texture_l od_bias affects the definition of this extension.
SGA X_texture_scal e_bias affects the definition of this extension.
SG S texture_select affects the definition of this extension.
SG S detail _texture affects the definition of this extension.
SGA S _sharpen_texture affects the definition of this extension.
SGA X_shadow affects the definition of this extension.
SA X_shadow_anbi ent affects the definition of this extension.
SA X_clipmap affects the definition of this extension.
SGA S _point_line_texgen affects the definition of this extension.

Overvi ew
Thi s extensi on adds support for nmultiple active textures. The texture
capabilities are symretric for all active textures. Any texture capability
extensi on supported for one texture nust be supported for all active
textures. Each active texture has its own state vector which includes
texture image and filtering paraneters and texture environnent application.

The texture environments are applied in a pipelined fashion whereby the
out put of one texture environnent is used as the input fragment color for
the texture environnent for the next active texture. Changes to texture
state other than texture coordi nates are routed through a sel ector which
controls which instance of texture state is affected.

Homm o - +
cfo----- >| | - + pi pelined texture
| TEO |--->| | envi ronment
a0 ----- >| | | TE1 | - +
bk |--->| |
(O B A T >| | | TE2 | - +
ook |--->| |
Ct2 - - >| | | TE3 |
Hoem o= + | |--> cf"'
(O B R e >| |
Homm o - +

Ct<i> = texture color fromtexture | ookup <i>
(@ = fragment col or
TE = texture environment

Texture coordi nate set, texture coordi nate eval uator state, texture

26

NVIDIA Corporation Advanced OpenGL Development

generation function, and texture matrix are replicated independently of
the texture rasterization state and may differ in nunber fromthe

nurmber of textures which can be active during rasterization
Post-transformtexture coordinates sets are associated with a texture
rasterization unit by binding themto a texture environnment and they nay
be nulticast to several texture rasterization units

The specification is witten using four active textures and four
sets of texture coordinates though the actual nunber supported is
i mpl enent ati on dependent and can be larger or smaller than four

| ssues
* Ml tiTexCoord i s an annoyi ng nane

* alternatives for supplying fine grain texcoord

1. Tex<k>Coor d<n><T>[v|f] (<T> data)
a. efficient, no error checking required
d. adds *a lot* of new commands

2. Milti TexCoord<n><T>[v|f] (enumtarget, <T> data)
a. only a small nunber of commmands added
a. can be fairly efficient (my need hw tweak)
d. needs range checking for <target>

3. reuse TexCoord comand and add Sel ect Text ur eCoor dSet SG S(enum t ar get)
to control routing
a. only add one new conmands
d. adds a lot of function call overhead when using nmultiple
textures
d. need to range check <target>

* seens a little hacky to have Sel ect TextureSA S control texture matrix
since that is part of transformstate and to have it control eval uator
state yet SELECTED TEXTURE itself is part of texture state

* Sel ect TextureSGE S probably should not affect client state such as
the vertex array state

it doesn't any nore

* nmechanismto replicate input texcoords across nmultiple texture paths
could be done with a pre-transformnnulticast or post-transform
mul ticast.

done using TEXTURE_ENV_COORD SET_SA S texture paraneter
whi ch is a post-transform nechani sm

RESOLVED: | eave the coord source binding separate from
the texture object state => needs a new command to set it.

* need proxy/ macro object to handle resource constraints
save for another extension?

* still need a way to route textures to lighting block :(
defined in |ight_texture. spec
* should there be a post-filter colortable per texture?

* should the nunber of textures and the nunber of texture
coordi nate paths be decoupl ed?
RESOLVED: yes
There are sone issues with this. W choose to break
texture state into 3 pieces:
1. client state deal with issuing texture coordinates
fromthe application
2. transform state which includes texgen, texture
matrix, evaluation maps, and texture coordi nate
retrieval from Gets and Feedback
3. rasterization state which includes texture

27

NVIDIA Corporation Advanced OpenGL Development

imges, filter parameters and environnent.
2 & 3 are both server state. there is an inplication
that 1 and 2 are a little nore tightly coupled and
equal in nunmber but we need to keep the client
state separate.
There is some clunsiness with referring to the 2nd
group of state as transformstate. There is a problem
that the texgen state is part of the texture state
used in PushAttrib and PopAttrib so sone finessing
is required.

* gspecial treatnent of name 0?
RESOLVED: no

* nore texture environnent functions, SUBTRACT, ...?
| eadi ng candi dat es are SUBTRACT and REVERSE_SUBTRACT
could al so make a new version of environment which is
simlar to bl ending.
RESOLVED: new environment, see texture_env.spec

* nore general conbination of texture results?
RESOLVED: do themin add-on specs

* allow texture environnent conputation to do sonething
even when texture is disabled. This contradicts the current
specification of texturing (the difference would show
up in the REPLACE environnent), so we redefine this
behavior in a new environnent (see texture_env.spec)

* support for interleaved arrays

add a command which acts as a nmultiplier on the current
interleaved array token causing the texture coordinate
array to have <n> contiguous texture coords of the sane
type and fornat.

* sone clarifications:

Sel ect TextureCoordSet SG S affects client state only and

af fects the commands TexCoord<n>{T}[v], TexCoordPoi nter,
Enabl eClientState, and DisableCientState. Display lists
contain texture coordinates for which the binding is fully
resolved to one of TEXTUREO_SA S .. TEXTURE<n>_Sd S.

| chose to renpve Miulti TexCoordPointerSA S as it was difficult
to also include tokens which would make it possible to call

Enabl e/ Di sabl eClientState with a token corresponding to the
appropriate texture coordi nate set, so Sel ect TextureCoordSet SA S
is required to manipulate the array state. To mamintain symetry,
I nade all commands use Sel ect Text ureCoordSet SA S and t he

Mul ti TexCoord<n>{T}[v] SG S comrands are added to help with
performance. An alternative would be to have both

Mul t i TexCoor dPoi nter SG S and add new t okens
TEXTURE_COORD_ARRAYO_SA S .. TEXTURE_COORD_ARRAY<n>_SG S and

not give TEXTURE_COORD_ARRAYO_SG S the same val ue as
TEXTURE_COORD_ARRAY, so that we can have the rel ationship
TEXTURE_COORD_ARRAY<i > SG S = TEXTURE_COORD ARRAY0+SG S+i .

This still mght cause sonme confusion/asymetry if the <target>
paraneter of Milti TexCoordPoi nter SA S/ Miul ti TexCoord<n>{T}[Vv] SA S
is TEXTUREO_SGE S .. TEXTURE<n>_SG S but Enabl eCl i ent St at e/

Di sabl ed i ent State use TEXTURE_COORD ARRAYO_SGA'S ..
TEXTURE_COORD_ARRAY<n>_SG S

New Procedures and Functions
void Multi TexCoord1dSG S(enum target, double s);
void Multi TexCoordldvSG S(enum target, const double *v);
void Multi TexCoordlf SG S(enum target, float s);
void Multi TexCoordlf vSGE S(enum target, const float *v);
void Multi TexCoordli SG S(enumtarget, int s);
void Multi TexCoordli vSGE S(enum target, const int *v);
void Multi TexCoord1lsSG S(enum target, short s);

28

NVIDIA Corporation Advanced OpenGL Development

void Multi TexCoordlsvSG S(enum target, const short *v);

void Multi TexCoord2dSG S(enum target, double s, double t);

void Multi TexCoord2dvSG S(enum target, const double *v);

void Multi TexCoord2f SG S(enumtarget, float s, float t);

void Multi TexCoord2fvSGE S(enum target, const float *v);

void Multi TexCoord2i SA S(enumtarget, int s, int t);

voi d Multi TexCoord2i vSGE S(enum target, const int *v);

void Multi TexCoord2sSAE S(enum target, short s, short t);

void Multi TexCoord2svSG S(enum target, const short *v);

void Multi TexCoord3dSG S(enum target, double s, double t, double r);

void Multi TexCoord3dvSGE S(enum target, const double *v);

void Multi TexCoord3f SA S(enumtarget, float s, float t, float r);

void Multi TexCoord3fvSGE S(enum target, const float *v);

void Multi TexCoord3i SG S(enumtarget, int s, int t, int r);

void Multi TexCoord3i vSGE S(enum target, const int *v);

void Multi TexCoord3sSA S(enum target, short s, short t, short r);

void Multi TexCoord3svSG S(enum target, const short *v);

void Multi TexCoord4dSA S(enum target, double s, double t, double r, double q);
void Multi TexCoord4dvSG S(enum target, const double *v);

void Multi TexCoord4f SG S(enum target, float s, float t, float r, float q);
void Multi TexCoord4f vSGE S(enum target, const float *v);

void Multi TexCoord4i SG S(enumtarget, int s, int t, int r, int q);

voi d Multi TexCoord4i vSGE S(enum target, const int *v);

void Multi TexCoord4sSG S(enum target, short s, short t, short r, short q);
void Multi TexCoord4svSG S(enum target, const short *v);

voi d Interl eavedText ureCoordSetsSA S(int factor);

voi d Sel ect TextureSA S(enum target);

voi d Sel ect Text ur eCoor dSet SG S(enum t arget) ;

voi d Sel ect Text ureTransf orn5G S(enum target);

New Tokens
Accepted by the <pnane> paraneters of GetBool eanv, GCetlntegerv,
CGet Fl oatv, and Get Doubl ev:

SELECTED_TEXTURE_SG S 0x83C0
SELECTED_TEXTURE_COORD_SET_SG S 0x83Cl
SELECTED_TEXTURE_TRANSFORM SGI S~ 0x83C2
MAX_TEXTURES_SG S 0x83C3
MAX_TEXTURE_COORD_SETS SG S 0x83C4

Accepted by the <pnane> paraneter of TexEnvi, TexEnvf,
TexEnviv, TexEnvfv, GetTexEnviv, and Get TexEnvfyv:

TEXTURE_ENV_COORD_SET_SGi S 0x83C5

Accepted by the <target> paraneter of Sel ectTextureSA S,

Sel ect Text ureTransfornSG S, Sel ect Text ur eCoor dSet SG S,

Mul ti TexCoord<n>{T}[v] SG S, and the <paranr of TexParaneteri and
TexParameterf, and the <parans> paraneter of TexParaneteriv, and
TexPar anmet erfv:

TEXTUREO_SG S 0x83C6
TEXTUREL1_SG S 0x83C7
TEXTURE2_SG S 0x83C8
TEXTURE3_SG S 0x83C9

<reserve enuns for 32>

Additions to Chapter 2 of the 1.1 Specification (OpenG. Operation)
Section 2.6 Begin/End Paradi gm
<amend paragraph 2 & 3>
Each vertex is specified with two, three, or four coordinates. In
addition, a current normal, current texture coordinate set, and current
color may be used in processing each vertex. Nornmals are used by the GL in
lighting calculations; the current nornmal is a three-dimensional vector
that may be set by sending three coordinates that specify it. Texture
coordi nates determine how a texture image is mapped onto a prinitive
Miul tiple sets of texture coordinates may be used to specify how nmultiple
texture i mages are napped onto a primtive. The nunber of texture
coordi nate sets supported is inplenentati on dependent but nust be at |east
one

29

NVIDIA Corporation Advanced OpenGL Development

A color is associated with each vertex as it is specified. This associated
color is either the current color or a color produced by lighting

dependi ng on whether or not lighting is enabled. Texture coordinates are
simlarly associated with each vertex. Miltiple sets of texture coordinates
may be associated with a vertex. Figure 2.2 summarizes the association of
auxiliary data with a transfornmed vertex to produce a processed vertex

<amend figure 2.2 to include multiple texcoord processing bl ocks
(current texcoords, texgen, texture matrix)>

<amend paragraph 6>

Before a col or has been assigned to a vertex, the state required by a vertex
is the vertex's coordinates, the current normal, and the current texture
coordi nate sets. Once color has been assigned, however, the current normal
is no |l onger needed. Because col or assignment is done vertex-by-vertex, a
processed vertex conprises the vertex's coordinates, its assigned col or

and its texture coordinate sets

Section 2.7 Vertex Specifications <texture coordi nates>
<amend paragraph 2>

Current values are used in associating auxiliary data with a vertex
as described in section 2.6. A current value may be changed at any tine
by issuing an appropriate command. The commands

voi d TexCoord{1234}{sifd}SA S(T coords)
voi d TexCoord{1234}{sifd}vSA S(T coords)

specify the current honpgeneous texture coordi nates, naned s,t,r, and q.
The TexCoordl family of commands set the s coordinate to the provided
single argument while settingt and r to O and q to 1. Simlarly
TexCoord2 sets s and t to the specified values, r to 0, and q to 1
TexCoord3 sets s, t, and r, with q set to 1, and TexCoord4 sets all four
texture coordi nates

I npl ementati ons may support nore than 1 set of texture

coordi nates. The Milti TexCoord family of commands takes the
coordinate set to be nodified as the <target> parameter. The
<target> paranmeter is one of TEXTUREO_SG S through

TEXTURE3_SG S. If a <target> paranmeter greater than the nunber of
supported coordinate sets is specified, the command has no effect.
The command

voi d Sel ect Text ur eCoor dSet SA S(enum t ar get)

is used to change the texture coordinate set nodified by the TexCoord*

famly of commands. <target> is one of TEXTUREO_SG S t hrough TEXTURE3_SAd S
corresponding to the texture coordinate set to be nodified by the TexCoord
commands. The current coordinate set selection is part of client state rather
than server state

Section 2.8 Vertex Arrays

<amend paragraph 1>

The vertex specification comands in section 2.7 accept data in al nbst any
format, but their use requires many command executions to specify even
sinple geonetry. Vertex data may al so be placed in arrays that are stored
in the client's address space. Blocks of data in these arrays nay be used
to specify multiple geonetric primtives through the execution of a single
GL command. The client nay specify 6 or nore arrays at once: one each to
store vertex coordi nates, edge flags, colors, color indices, normals and
one or nore texture coordinate sets. The commands

voi d EdgeFl agPoi nter(sizei stride, void *pointer)

voi d VertexPointer(int size, enumtype, sizei stride, void *pointer)
voi d Col orPointer(int size, enumtype, sizei stride, void *pointer)
voi d | ndexPoi nter(enumtype, sizei stride, void *pointer)

voi d Nornal Poi nter(enum type, sizei stride, void *pointer)

voi d TexCoordPoi nter(int size, enumtype, sizei stride, void *pointer)

30

NVIDIA Corporation Advanced OpenGL Development

<insert this paragraph> between paragraph 2 & 3>

I'n inmplenmentations which support nore than one set of texture coordinates,
the command Sel ect Text ureCoordSet SG S is used to select the vertex array
paraneters to be nodified by the TexCoordPoi nter conmand and the array

af fected by client state enable and di sable comands with the
TEXTURE_COORD_ARRAY par anet er.

<nmodi fy the section on interl eaved arrays as foll ows>
The commands

void Interl eavedArrays(enum format, sizei stride,
voi d *pointer) ;

voi d Interl eavedText ureCoordSet sSA S(int factor) ;

efficiently initializes the six arrays and their enables to one of 14
configurations. <format> nust be one 14 synbolic constants: V2F, V3F,
C4AUB_V2F, C4UB_V3F, C3F_V3F, N3F_V3F, CAF_N3F_V3F, T2F _V3F, T4F_VAF,
T2F_CAUB_V3F, T2F_C3F_V3F, T2F _N3F_V3F, T2F_CAF_N3F_V3F, T4F_CAF_N3F_VAF.
<factor> is an integer between 1 and SELECTED TEXTURE COORD SET_SG S

and specifies how many texture coordinate sets are enabl ed as part

of the Interl eavedArrays command.

The effect of

Interl eavedArrays(format, stride, pointer);
I nterl eavedText ur eCoor dSet sSG S(factor);

is the same as the effect of the command sequence

<copy comrand sequence from 1.1 spec, but change the part dealing
with texture coords to>

Get I nt eger v(SELECTED TEXTURE_COORD SET_SA S, &x);
if (<et>) {
for(i =0; i < factor; i++) {
Sel ect Text ur eCoor dSet SG S(TEXTUREO_SA S+i) ;
Enabl ed i ent St at e(TEXTURE_COORD_ARRAY) ;
TexCoor dPoi nter (st, FLOAT, str, <pointer>+i*pc);
}
for(i = factor; i < MAX TEXTURE_COORD SETS_SA S; i++) {
Sel ect Text ur eCoor dSet SG S(TEXTUREO_SA S+i) ;
Di sabl ed i ent St at e(TEXTURE_COORD_ARRAY) ;

} else {
for(i = 0; i < MAX_TEXTURE_COORD SETS SA S; i++) {
Sel ect Text ur eCoor dSet SG S(TEXTUREO_SA S+i) ;
Di sabl ed i ent St at e(TEXTURE_COORD_ARRAY) ;

}

}
Sel ect Text ur eCoor dSet SA S(x) ;
pc *= factor;

If the nunber of supported is texture coordinate sets,
MAX_TEXTURE_COORD_SETS SA S, is <k>, then the client state require to

i mpl enent vertex arrays consists of five plus <k> bool ean val ues, five
plus <k> integer stride values, four plus <k> constants representing array

types, and three plus <k> integers representing values per element. |In the
initial state, the bool ean val ues are each disabled, the nenory pointers
are each null, the strides are each zero, the array types are each FLOAT,

and the integers representing values per el enment are each four.

Section 2.10.2 Matrices

<amend paragraph 8 texture matrix>

There is another 4x4 matrix that is applied to texture coordi nates.
This matrix is applied as

| ml b m® mi3 | |s]

31

NVIDIA Corporation Advanced OpenGL Development

where the left matrix is the current texture matrix. The Matrix is applied
to the coordinates resulting fromtexture coordi nate generation which
(which may sinply be the current texture coordinates), and the resulting
transformed coordi nates beconme the texture coordinates associated with a
vertex. Setting the matrix nmpbde to TEXTURE causes the already described
matrix operations to apply to the texture matrix stack

For inplenmentations which support nore than one set of texture coordinates
there is a corresponding texture matrix for each coordinate set. Each stack
has the sane depth. The texture matrix which is affected by the matrix
operations is set using the Sel ect TextureTransfornSG@ S command

There is a stack of matrices for each of the matrix nodes. For MODELVI EW
mode, the stack depth is at least 32 (that is, there is a stack of at |east
32 nodel -view matrices). For other nodes, the depth is at least 2. Texture
matrix stacks for all texture coordinate sets have the sane depth

voi d PushMatrix(void)

pushes the stack down by one, duplicating the current matrix in both the
top of the stack and the entry below it

voi d PopMatrix(void)

pops the top entry off of the stack, replacing the current matrix with the
matrix that was the second entry in the stack. The pushing or popping

takes place on the stack corresponding to the current matri x node. Popping
a matrix off a stack with only one entry generates the error STACK_ UNDERFLOW
pushing a matrix onto a full stack generates STACK OVERFLOW

When the current matrix nmode is TEXTURE, the texture matrix stack correspondi ng
to the currently selected textured is pushed or popped

The state required to inplement transformations consists of a three-value
integer indicating the current matrix nmbde, a stack of at |east two 4x4
matrices for PROJECTION and one stack of at |east two 4x4 matrices for

each set of texture coordinates, TEXTURE, as well as associated stack pointers
and a stack of at least 32 4x4 matrices with an associ ated stack pointer for
MODELVI EW Initially, there is only one matrix on each stack and al

matrices are set to the identity. The initial matrix node i s MODELVI EW

Section 2.10.4 CGenerating texture coordinates

<amend paragraph 4>

The state required for texture coordi nate generation for each set of
texture coordinates supported by the inplenentation conprises a
three-val ued integer for each coordinate indicating coordi nate generation
node, and a bit for each coordinate to indicate whether texture coordinate
generation is enabled or disabled. In addition, four coefficients are
required for the four coordinates for each of EYE_ LI NEAR and
OBJECT_LINEAR. The initial state has the texture generation function

di sabled for all texture coordinates. The initial values of p_i for s
except p_1 which is one; for t all the p_i are zero except p_2, which is
1. The values of p_i for r and q are all zero. These values of p_i apply
for both the EYE LI NEAR and OBJECT_LI NEAR versions. Initially all texture
generation nodes are EYE_LI NEAR

Section 2.12 Current Raster Position

<amend paragraph 2>

The current raster position consists of three wi ndow coordi nates x_w,
y_w, and z_w, a clip coordinate w c value, and eye coordi nate di stance

a valid bit, and associated data consisting op a color and texture
coordinate sets. It is set using one of the RasterPos commands

<amend paragraph 5>

32

NVIDIA Corporation Advanced OpenGL Development

Addi

The current raster position requires five single-precision floating-point
values for its x_w, y_w, and z_w wi ndow coordinates, its wc clip
coordinate, and its eye coordinate distance, a single valid bit, a color
(RGBA and col or index), and texture coordinates for each set of texture
coordi nates supported by the inplenmentation. |In the initial state, the
coordi nates and texture coordinates and both (0,0,0,1), the eye coordinate
distance is 0, the valid bit is set, the associated RGBA color is (1,1,1,1)
and the associated color index is 1. In RGBA node, the associated col or
index always has its initial value; in color index npde, the RGBA col or

al ways maintains its initial value

tions to Chapter 3 of the 1.1 Specification (Rasterization)

Section 3.8 Texturing

<amend paragraphs 1 & 2>

Texturing nmaps a portion of one or nore specified i rages onto each
primtive for which texturing is enabled. This mapping is acconplished by
using the color of an inage at the location indicated by a fragnent's
(s,t,r) coordinates to nodify the fragment's RGBA color (r is currently
ignored). An inplenentation may support texturing using nore than one
imge at a time. |In this case the fragment carries nmultiple sets of
texture coordinates (s,t,r) which are used to index separate inmges to
produce col or val ues which are collectively used to nodify the fragment's
RGBA color. Texturing is specified only for RGBA node; its use in color
index nmbde is undefined. The follow ng subsections (up to and including
Section 3.8.5) specify the GL operation with a single texture and Section
3.8.6 specifies the details of how nultiple textures interact.

The GL provides a neans to specify the details of how texturing of a
primitive is effected. These details include specifications of the image to
be texture nmapped, the neans by which the inage is filtered when applied to
the primtive, and the function that determ nes what RGBA value is produced
given a fragnment color and an i mage val ue

Section 3.8.4 Texture (bjects

<add this paragraph to the end of the section>

The texture object nane space is shared anpngst all textures in nmultiple
texture inplenentations. A texture object may be bound to nore than one
texture target sinmultaneously, though they nust all be of the same type
(e.g., TEXTURE_ 1D, TEXTURE 2D). After a texture object is bound, any G
operations on that target also affect any other target to which the sane
texture object is bound

Section 3.8.5 Texture Environments and Texture Functions

<amend the second half of paragraph 1>

The possi bl e environment paraneters are TEXTURE_ENV_MODE,
TEXTURE_ENV_COLOR, and TEXTURE_ENV_COORD_SET_SG S. TEXTURE_ENV_MODE may be
set to one of REPLACE, MODULATE, DECAL, or BLEND; TEXTURE_ENV_COLOR is set
to an RGBA color by providing four single-precision floating-point val ues
in the range [0, 1] (val ues outside this range are clanped to it). |If
integers are provided for TEXTURE_ENV_COLOR, then they are converted to
floating-point as specified in Table 2.6 for signed integers.
TEXTURE_ENV_COORD_SET_SG S may be set to one of TEXTUREO_SG S .
TEXTURE<n>_SG S where <n> is the one | ess than the nunber of supported
texture coordinate sets.

<insert before paragraph 3>

The val ue of TEXTURE_ENV_COORD SET_SG S specifies which set of fragnent
texture coordinates are used to deternmine the texture value used in
the texture function. The same set of texture coordinates nay

be sinultaneously used by nmultiple textures

<repl ace paragraph 3>

The state required for the current texture environment consists of the
four-valued integer indicating the texture function, four floating-

poi nt TEXTURE_ENV_COLOR val ues, and one MAX_TEXTURE_COORD SETS_SG S-val ued
integer indicating the texture coordinate set binding. In the initia
state, the texture function is given by MODULATE, TEXTURE_ENV_COLCR i s

33

NVIDIA Corporation Advanced OpenGL Development

Addi
and

Addi

Addi

(0,0,0,0), and texture coordinate set is TEXTUREO_SA S
Section 3.8.6 Texture Application <replace with this>

Texturing is enabl ed or disabled using the generic Enable and Disable
commands, respectively, with the synbolic constant TEXTURE_ 1D or TEXTURE_2D

to enabl e the one-di nensional or two-dinensional texture, respectively. |If
both the one- and two-di mensional textures are enabled, the two-di mensiona
texture is used. |If all texturing is disabled, a rasterized fragnent is

passed unaltered to the next stage of the GL (although its texture

coordi nates may be discarded). Oherwi se, a texture value is found
according to the paraneter values of the currently bound texture inmage of
the appropriate dinmensionality using the rules given in sections 3.8.1 and
3.8.2. This texture value is used along with the inconming fragment in
conputing the texture function indicated by the currently bound texture
environment. The result of this function replaces the incom ng fragnent's
R, G B, and A values. These are the color values passed to subsequent
operations. Oher data associated with the inconm ng fragment remin
unchanged, except that the texture coordi nates may be di scarded

When multiple textures are supported, additional textures are each paired
with an environnment function. The second texture function is conputed
using the texture value fromthe second texture, the fragnent resulting
fromthe first texture function conputation and the environnent function
currently bound to the second texture. |If there is a third texture, the
fragment resulting fromthe second texture function is conbined with the
third texture value using the environment function bound to the third
texture and so on. Texturing is enabled and disabled individually for each
texture. |If texturing is disabled for one of the textures, then the
fragment result fromthe previous stage is passed unaltered to the next
st age

tions to Chapter 4 of the 1.1 Specification (Per-Fragnent Operations
the Franebuffer)

tions to Chapter 5 of the 1.1 Specification (Special Functions)
Section 5.1 Evaluators

<amend second part of paragraph 2 to indicate that the eval uator
map nodified is affected by SELECTED TEXTURE_TRANSFORM SA S when t he
the type paraneter is one of the texture coordinates.>

<amend paragraph 7>

The eval uation of a defined nap is enabl ed or disabled with Enable and

Di sabl e using the constant corresponding to the map as descri bed

above. In inplenentations which support nultiple texture coordinates the
af fected texture evaluator map is further qualified by the val ue of
SELECTED _TEXTURE_TRANSFORM SA@ S. The error I NVALID VALUE results if
either ustride or vstride is less than k, or if ul is equal to u2, or

if vlis equal to v2

Section 5.3 Feedback
<amend bottom of paragraph 2>

The texture coordi nates and colors returned are these resulting fromthe
clipping operations described in (section 2.13.8). Only one set of texture
coordinates is returned even for inplenmentations which support nultiple
texture coordinates. The texture coordinate set returned is the one
correspondi ng to the val ue of SELECTED TEXTURE_TRANSFORM Sd S.

tions to Chapter 6 of the 1.1 Specification (State and State Requests)
<add this paragraph after paragraph 14 regarding nulti-val ued state variabl es>

When multiple textures are supported, nost texture state variables are
further qualified by the value of SELECTED TEXTURE_TRANSFORM SG S or
SELECTED TEXTURE_SG S to determ ne which server texture state vector is
queried. Client texture state variables such as texture coordinate
array pointers are qualified with SELECTED TEXTURE_COORD SET_Sd S
Tables 6.5 through 6.22 indicate those state variables which are

34

NVIDIA Corporation Advanced OpenGL Development

qualified by SELECTED TEXTURE TRANSFORM SG S, SELECTED_TEXTURE_SA S or
SELECTED_TEXTURE_COORD_SET_SG S during state queri es.

<add this paragraph after paragraph 16 regardi ng the TEXTURE_BI T>

When multiple textures are supported, operations on groups containing
replicated texture state push or pop all versions of texture state
within that group. When server state for a group is pushed all state
in the group corresponding to TEXTUREO_SG S is pushed first, followed by
state corresponding to TEXTUREL_SA S, and so on up to and including the
state corresponding to TEXTURE<n>_SA S where <n> i s the val ue of

max{ MAX_TEXTURES_SG S, MAX TEXTURE_COORD SETS SA S}. |f state does

not exist for an attribute (this can occur when MAX_TEXTURES SA S is
not equal to MAX_TEXTURE_COORD SETS SA@S) then it is ignored.

When server state for a group is popped the replicated texture state is
restored in the opposite order that it was pushed, starting with state
correspondi ng to TEXTURE<n>_SGE S and ending wi th TEXTUREO_SGd S.
Identical rules are observed for client texture state push and pop

oper ati ons.

<renane vertex_array attribute group to vertex>

Additions to the GLX Specification
None

GLX Protocol
TBD

Dependenci es on EXT_t exture3D
If EXT_texture3D is not supported than the functionality and state
associ ated with EXT_texture3D does not exist and is therefore not extended.

Dependenci es on SGA S_texture4D
If SA S textured4D is not supported than the functionality and state
associated with SG@ S_texture4D does not exist and is therefore not extended.

Dependenci es on SGA S_texture_border_cl anp
If SA S texture_border_clanp is not supported than the functionality and state
associated with SG S_texture_border_clanp does not exist and is therefore
not extended.

Dependenci es on SG _texture_col or_table
If SG _texture_color_table is not supported than the functionality and state
associated with SG _texture_col or_table does not exist and is therefore not extended.

Dependenci es on SGA S_texture_edge_cl anmp
If SGA S texture_edge_clanmp is not supported than the functionality and state
associated with SG S_texture_edge_clanp does not exist and is therefore not extended.

Dependenci es on SGA X_texture_add_env
If SA X texture_add_env is not supported than the functionality and state
associ ated with SG X_texture_add_env does not exist and is therefore not extended.

Dependencies on SGA S texture_filter4
If SAS texture_filterd4 is not supported than the functionality and state
associated with SG S texture_filter4 does not exist and is therefore not extended.

Dependenci es on SA S_texture_l od
If SA S texture_lod is not supported than the functionality and state
associated with SG S_texture_|l od does not exist and is therefore not extended.

Dependenci es on SGA X_texture_l od_bi as
If SA X texture_lod_bias is not supported than the functionality and state
associated with SG X_texture_l od_bi as does not exist and is therefore not extended.

Dependenci es on SGA X_texture_scal e_bi as
If SA X_texture_scale_bias is not supported than the functionality and state
associated with SG X_texture_scal e_bi as does not exist and is therefore not extended.

Dependenci es on SA S_texture_sel ect
If SGA S texture_select is not supported than the functionality and state

35

NVIDIA Corporation Advanced OpenGL Development

associated with SG S_texture_sel ect does not exist and is therefore not extended.

Dependenci es on SA S detail _texture
If SGA S detail _texture is not supported than the functionality and state
associated with SG S detail _texture does not exist and is therefore not extended.

Dependenci es on SGA S_sharpen_t exture
If SA S sharpen_texture is not supported than the functionality and state
associ ated with SG@ S_sharpen_texture does not exist and is therefore not extended.

Dependenci es on SGA X_shadow
If SA X_shadow i s not supported than the functionality and state
associ ated with SG X_shadow does not exist and is therefore not extended.

Dependenci es on SGA X_shadow_anbi ent
I f SA X_shadow_anbient is not supported than the functionality and state
associ ated with SG X_shadow_anbi ent does not exist and is therefore not extended.

Dependenci es on SGA X_cli pnap
If SA X clipmap is not supported than the functionality and state
associated with SG X_cli pmap does not exist and is therefore not extended.

Dependenci es on SGA S_point_I|ine_texgen
If SA S point_line_texgen is not supported than the functionality and state
associated with SG S_point_line_texgen does not exist and is therefore not extended.

Errors
I NVALID ENUM i s generated if Sel ect TextureSA S, Sel ect TextureTransfornsd S,
Sel ect Text ureCoordSet SA S, Ml ti TexCoord<n>{T}[v], or Milti TexCoor dPoi nter
paraneter <target> is not TEXTUREO_SA S .. TEXTURE3_SG S.

I NVALI D_OPERATI ON i s generated if Sel ect TextureCoordSet SG S or

Sel ect TextureTransfornSA@ S paraneter <target> is one of TEXTUREO_SG S
TEXTURE3_SG S and <target> is greater or equal than the nunber of

avail abl e textures coordinate sets.

I NVALI D_VALUE is generated if InterleavedTextureCoordSetsSA S paraneter
<factor> is not between 1 and MAX TEXTURE_COORD SETS SG S.

I NVALI D_OPERATI ON i s generated if Sel ect TextureSG S paranmeter <target> is
one of TEXTUREO_SG S .. TEXTURE3_SA S and <target> is greater or equal than
the nunber of available textures.

I NVALID ENUM i s generated if TexEnv{T}[v] paraneter <pname> is
TEXTURE_ENV_COORD _SET_SG S and the <paran» paraneter is not one of
TEXTUREO_SG S .. TEXTURE3_SG S.

I NVALI D_OPERATI ON i s generated if TexEnv{T}[v] paraneter <pname>
is TEXTURE_ENV_COORD SET_SG S and the <paran» paraneter is greater or equal
than the nunber of available textures coordinate sets.

I NVALI D_OPERATI ON i s generated if Sel ect TextureSGE@ S or
Sel ect TextureTransfornSA S i s executed between execution of Begin and the
correspondi ng execution of End.

I NVALI D_OPERATI ON i s generated if Sel ect TextureCoordSet SG S or
Mul ti TexCoordPoi nterSG@ S is executed between execution of Begin and the
correspondi ng executi on of End, but sone inplementati ons may not generate

the error. In such cases the result of executing these commands is
undef i ned.
New St at e
Cet Val ue Get Command Type Initial Value Attribute
SELECTED_TEXTURE_SG S Get I ntegerv z4 TEXTUREO_SG S texture
SELECTED_TEXTURE_TRANSFORM SG'S Get I ntegerv z4 TEXTUREO_SG S texture
SELECTED_TEXTURE_COORD_SET_SG S Getlntegerv z4 TEXTUREO_SG S vertex
TEXTURE_COORD_SET_| NTERLEAVE_FACTOR SGI S Get I ntegerv Z4 1 vertex

Replicated State

36

Advanced OpenGL Development

Cet Val ue Get Command Type Initial Value Attribute
X CURRENT_TEXTURE_COORDS Get Fl oatv 1* x T (0,0,0,1) current
X CURRENT_RASTER_TEXTURE_COORDS Get Fl oatv 1* x T (0,0,0,1) current
¢ TEXTURE_COORD_ARRAY | sEnabl ed 1* x B Fal se vertex-array
¢ TEXTURE_COORD_ARRAY_SI ZE Get | nt egerv 1* x Z+ 0 vertex-array
¢ TEXTURE_COORD_ARRAY_TYPE Get | nt egerv 1* x Z4 FLOAT vertex-array
¢ TEXTURE_COORD_ARRAY_STRI DE Get | nt egerv 1* x Z+ 0 vertex-array
¢ TEXTURE_COORD_ARRAY_PO NTER Get Poi nterv 1* x Y 0 vertex-array
X TEXTURE_MATRI X Get Fl oatv 1* x 2* x M4 Identity -
X TEXTURE_STACK_DEPTH Get | nt egerv 1* x Z+ 1 -
TEXTURE_1D | sEnabl ed 1* x B Fal se texture/ enabl e
TEXTURE_2D | sEnabl ed 1* x B Fal se texture/ enabl e
TEXTURE_3D_EXT | sEnabl ed 1* x B Fal se texture/ enabl e
TEXTURE_4D_SA S | sEnabl ed 1* x B Fal se texture/ enabl e
TEXTURE_BI NDI NG_1D Get | nt egerv 1* x Z+ 0 texture
TEXTURE_BI NDI NG_2D Get | nt egerv 1* x Z+ 0 texture
TEXTURE_BI NDI NG_3D_EXT Get | nt egerv 1* x Z+ 0 texture
TEXTURE_BI NDI NG_4D_SG S Get | nt egerv 1* x Z+ 0 texture
TEXTURE Get Tex| nage 1* x n x| see sec 3.8 -
TEXTURE_W DTH Get TexLevel Paranmeter 1* x n x Z+ O -
TEXTURE_HEI GHT Get TexLevel Parameter 1* x n x Z+ O -
+TEXTURE_DEPTH_EXT Get TexLevel Paranmeter 1* x n x Z+ O -
TEXTURE_BORDER Get TexLevel Paranmeter 1* x n x Z+ O -
TEXTURE_| NTERNAL_FORVAT Get TexLevel Paranmeter 1* x n x Z+ O -
(TEXTURE_COVPONENTS)
TEXTURE_RED_SI ZE Get TexLevel Paranmeter 1* x n x Z+ O -
TEXTURE_GREEN_SI ZE Get TexLevel Paranmeter 1* x n x Z+ O -
TEXTURE_BLUE_SI ZE Get TexLevel Paranmeter 1* x n x Z+ O -
TEXTURE_ALPHA_SI ZE Get TexLevel Paranmeter 1* x n x Z+ O -
TEXTURE_LUM NANCE_SI ZE Get TexLevel Paraneter 1* x n x Z+ O -
TEXTURE_I NTENI STY_SI ZE Get TexLevel Paranmeter 1* x n x Z+ O -
TEXTURE_BORDER_COLOR Cet TexParaneter 1* x 2+ x C (0,0,0,0) texture
TEXTURE_M N_FI LTER Get TexPar aneter 1* x 2+ x Z6 sec 3.8 texture
TEXTURE_MAG_FI LTER Get TexPar aneter 1* x 2+ x Z2 sec 3.8 texture
TEXTURE_WRAP_S Get TexPar aneter 1* x 2+ x Z2 REPEAT texture
TEXTURE_WRAP_T Get TexPar aneter 1* x 2+ x Z2 REPEAT texture
+TEXTURE_WRAP_R_EXT Get TexParaneter 1* x 2+ x Z2 REPEAT texture
+TEXTURE_WRAP_Q SG S Get TexPar aneter 1* x 2+ x Z2 REPEAT texture
TEXTURE_PRI ORI TY Cet TexParaneterfv 1* x 2+ x R [0, 1] 1 texture
TEXTURE_RESI DENT Cet TexParaneterfv 1* x 2+ x B Fal se texture
+TEXTURE_M N_LCD_SG S Get TexParaneterfv 1* x n x R -1000 texture
+TEXTURE_MAX_LCD_SG S Get TexParaneterfv 1* x n x R 1000 texture
+TEXTURE_BASE_LEVEL_SG S Get TexParaneteriv 1* x n x R 0 texture
+TEXTURE_MAX_LEVEL_SG S Get TexParaneteriv 1* x n x R 1000 texture
+TEXTURE_LOD_BI AS_S_SG X Get TexParaneterfv 1* x n x R 0 texture
+TEXTURE_LOD_BI AS_T_SG X Get TexParaneterfv 1* x n x R 0 texture
+TEXTURE_LOD_BI AS_R_SG X Get TexParaneterfv 1* x n x R 0 texture
+TEXTURE_FI LTER4A_FUNC_SG S Cet TexFilterFuncSGA S 1* x 2 x Size x R see text texture
+DETAI L_TEXTURE_2D_BI NDI NG_SG@ S Get | ntegerv 1* x Z+ 0 texture
+DETAI L_TEXTURE_LEVEL_SG S Get TexParaneteriv 1* x n x Z- -4 texture
+DETAI L_TEXTURE_MODE_SG S Get TexParaneteriv 1* x n x Z2 ADD texture
+DETAI L_TEXTURE_FUNC_POI NTS_SG S Get TexParaneteriv 1* x n x Z+ 2 texture

+<DETAI L_TEXTURE_FUNC> Get Detai | TexFuncS@ S 1* x n x mx R {0, 0}, {-4, 1} texture

+SHARPEN_TEXTURE_FUNC_PO NTS_SG S Get TexParaneteriv 1* x n x Z+ 2 texture
+<SHARPEN_TEXTURE_FUNC> Get Shar penTexFuncSA@ S 1* x n x mx R {0, 0},{-4, 1} texture

+TEXTURE_COWPARE_SG X Get TexParaneter[if]v 1* x B Fal se texture
+TEXTURE_COVPARE_OPERATOR_SG X Get TexParaneter[if]v 1* x Z_2 TEXTURE_LEQUAL_R SG X texture
+SHADOW AMBI ENT_SG X Get TexParaneter[if]v 1* x R0,1] 0.0 texture
+TEXTURE_CLI PMAP_FRAME_SG X Get TexParanmeterf 1* x Z+ 0 texture
+TEXTURE_CLI PMAP_CENTER_SG X Get TexParanmeterfv 1* x 2 x Z+ 0,0 texture
+TEXTURE_CLI PMAP_OFFSET_SG X Get TexParanmeterfv 1* x 2 x Z+ 0,0 texture
+TEXTURE_CLI PMAP_VI RTUAL_DEPTH _SA X Get TexParaneterfv 1* x 3 x Z+ 0,0,0 texture
+DUAL_TEXTURE_SELECT_SG S Get TexParaneter 1* x n x 3 x Z2 0 texture
+QUAD_TEXTURE_SELECT_SG S Get TexParaneter 1* x n x 3 x Z4 O texture
+POST_TEXTURE_FI LTER Bl AS_SG X Get TexParaneterfv 1* x n x 4 x R (0,0,0,0) texture
+POST_TEXTURE_FI LTER SCALE_SG X Get TexParaneterfv 1* x n x 4 x R (1,1,1,1) texture
TEXTURE_COLOR_TABLE_SG | sEnabl ed B Fal se texture/ enabl e
+COLOR_TABLE Cet Col or Tabl eSG 4 x | enpty -
+COLOR_TABLE_FORMAT_SA Get Col or Tabl eParanmeteri vSG 2 x 4 x Z38 RGBA -

37

+COLOR_TABLE_W DTH_SGl
+COLOR_TABLE_RED SI ZE_SG
+COLOR_TABLE_GREEN S| ZE_SG
+COLOR_TABLE_BLUE_SI ZE_SG
+COLOR_TABLE_ALPHA S| ZE_SG
+COLOR_TABLE_LUM NANCE_SI ZE_SGl
+COLOR_TABLE_| NTENSI TY_SI ZE_SG
+COLOR_TABLE_SCALE_SGi
+COLOR_TABLE_BI AS_SG

TEXTURE_ENV_MCDE

TEXTURE_ENV_COLOR

TEXTURE_ENV_COORD_SET_SG S

TEXTURE_GEN_x

EYE_PLANE

OBJECT_PLANE

TEXTURE_GEN_MCDE

X X X X

+TEXTURE_ENV_BI AS_SG X

x+EYE_PO NT_SA S
x+OBJECT_PO NT_SG S
X+EYE_LI NE_SG S
x+OBJECT_LINE_SG S

ORDER
ORDER
CCEFF
CCEFF
DOMAI N
DOMAI N
MAPL_x
MAP2_x

X X X X X X X X

+ = state defined in another

Cet Col or Tabl ePar anet eri vSA
Cet Col or Tabl ePar anet eri vSA
Cet Col or Tabl ePar anet eri vSA
Cet Col or Tabl ePar anet eri vSA
Cet Col or Tabl ePar anet eri vSA
Cet Col or Tabl ePar anet eri vSA
Cet Col or Tabl ePar anet eri vSA
Cet Col or Tabl ePar anet er f vSA
Cet Col or Tabl ePar anet er f vSA

Get TexEnvi v
Get TexEnvi v
Get TexEnvi v
| sEnabl ed

Get TexGenf v
Get TexGenf v
Get TexGeni v

Cet Fl oatv

Get TexGeni v
Get TexGeni v
Get TexGeni v
Get TexGeni v

Get Mapi v
Get Mapi v
Get Mapf v
Get Mapf v
Get Mapf v
Get Mapf v
| sEnabl ed
| sEnabl ed

ext ensi on.

1* x
l*
l*
l*
l*
l*
l*

X X X X X X

1*

x

1*
1*
1*
1*

X X X X

(k+9)
(k+9)
(k+9)
(k+9)
(k+9)
(k+9)
(k+9)
(k+9)

x = state qualified by SELECTED TEXTURE TRANSFORM SG S
c = state qualified by SELECTED TEXTURE_COORD SET_SG S

New | nmpl ement ati on Dependent

Get Val ue

MAX_TEXTURES_SG S

MAX_TEXTURE_COORD_SETS SG S

State

Get | nt egerv

Get | nt egerv

38

2 X 4 x Z+ 0
2 X 4 x Z+ 0
2 x 4 x Z+ 0
2 X 4 x Z+ 0
2 X 4 x Z+ 0
2 X 4 x Z+ 0
2 X 4 x Z+ 0
4 x R4 (1,1,1,1)
4 x R4 (0,0,0,0)
Z4 MODULATE
C (0,0,0,0)
zZ4 see sec 3.8
4 x B Fal se
4 x R4 see sec 2.10.4
4 x R4 see sec 2.10.4
4 x Z3 EYE_LI NEAR
C (0,0,0,0)
4 x R (0,0,0,1)
4 x R (0,0,0,1)
7 x R (0,0,0,1,0,0,1)
7 x R (0,0,0,1,0,0,1)
X Z8* 1
X 2 x Z8* 1,1
X 8% x Rn see sec 5.1
X 8% x 8% x Rn see sec 5.1
x 2 xR see sec 5.1
x 4 xR see sec 5.1
x B Fal se
x B Fal se
Type
Z+
Z+

Advanced OpenGL Development

pi xel

pi xel

texture
texture
texture
texture/ enabl e
texture
texture
texture

texture

texture
texture
texture
texture

M ni mum Val ue

NVIDIA Corporation Advanced OpenGL Development

E. NVIDIA’s Multitexture Combiners Specification

XXX — Prelimnary

Nanme
GL_NVIDI A nul titexture_conbiners

Ver si on
Date: 1998/04/16 9:00 am
$ld: //sw docs/ OpenCGL/ specs/ GL_NVI DI A_nul titexture_conbiners. txt#3$

Number
?2?27?

Dependenci es
GL_SA S nmultitexture

Overvi ew
Thi s extension provides a rmuch nore flexible mechani smfor
speci fying how nultiple textures are conbined with previous
fragments. It allows for nultiple combiners of the form
(Argd * Argl) Op (Arg2 * Arg3)
where Arg<n> can cone froma variety of inputs, such as
the diffuse color, or any of the currently active textures.
The result of the previous conbiner can be used as an input
to the next conbiner in the chain, thus allowing for very flexible
speci fication of how textures, diffuse color, blend factors, and
other inputs can be factored into the resultant fragment col or.

The al pha channel can receive input from separate sources, and can
use a separate <Op>, thereby giving even nore flexibility to the
appl i cati on.

| ssues
None

New Procedures and Functions
GLvoi d
gl MrexConbi ner Col or Ar gNVI DI A(GL.enum conbi ner,
GLenum arg,
GLenum i nput
GLbool ean conpl enent | nput ,
GLbool ean useAl phaConponent) ;

gl MrexConbi ner Col or Arg() allows any one of the 4 args (Arg0 ... Arg3)
to be set to an input to the conmbiner. Valid inputs are enunerated
bel ow. The input may be pulled fromthe al pha channel by setting
useAl phaConponent to GL_TRUE, such as in the case of a 1-chanel
texture used as an intensity texture; otherw se the normal red,
green, or blue conponent is used. The mathematical conpl enment of
the input arg may be used by setting conpl ementlnput to GL_TRUE.

GLvoi d
gl MrexConbi ner Al phaAr gNVI DI A(d enum conbi ner,
GLenum arg,
GLenum i nput
GLbool ean conpl ement | nput) ;

gl MrexConbi ner Al phaArg() allows any one of the 4 args (Arg0 ... Arg3)
to be set to an input to the conmbiner. Valid inputs are enunerated
bel ow. The mathenmtical conplenent of the input arg may be used by
setting conpl enentlnput to G._TRUE.

GLvoi d
gl MrexConbi ner Col or OpNVI DI A(d enum conbi ner,
GLenum operation);

gl MrexConbi ner Col or Op() can be used to set the operation used to
conbine (Arg0 * Argl) with (Arg2 * Arg3) for the red, green, and

39

NVIDIA Corporation Advanced OpenGL Development

bl ue components of the fragment in the specified conmbiner. It can be any
of the GL_MIEX_COMBI NER_ALPHA OP_* enumerants bel ow.

GLvoi d
gl MrexConbi ner Al phaQpNVI DI A(GLenum conbi ner,
GLenum operation);

gl MrexConbi ner Al phaOp() can be used to set the operation used to
conbine (Arg0 * Argl) with (Arg2 * Arg3) for the al pha conponent
of the fragment in the specified conbiner. It can be any of the
GL_MIEX_COMVBI NER_ALPHA_OP_* enunerants bel ow.

GLvoi d

gl MrexConbi ner Bl endFact or NVI DI A(GLenum conbi ner,
GLfl oat red,
GLfl oat green,
GLfl oat bl ue,
GLfl oat al pha);

gl MrexConbi ner Bl endFactor () allows the application to specify a
color that can be optionally used as one of the inputs to the
specified conbiner. This allows for texture applications such as
the GL_BLEND TexEnv to be inpl emented.

New Tokens
Accepted by gl Enabl e() and gl Di sabl e():
GL_NVI DI A_COVBI NERS_ENABLE ??? 0x900F
Accepted by the <conbi ner> paranmeter of all of the above-specified
functions:
GL_MTEX_COMBI NER_0 ??? 0x9010
GL_MIEX_COMBI NER_1 ??? 0x9011
GL_MIEX_COMBI NER_2 ??? 0x9012
GL_MIEX_COMBI NER_3 ??? 0x9013

<reserve enuns for 32 conbiners>

Accepted by the <arg> paraneter of gl MlexConbi ner Col or Arg() and
gl MrexConbi ner Al phaArg():

GL_Mrex_CovBl NER_ARGD ??? 0x9030
GL_Mrex_CovBI NER_ARGL ??? 0x9031
GL_MIrex_CoOMvBI NER_ARG2 ??? 0x9032
GL_Mrex_CovBl NER_ARG3 ??? 0x9033

Accepted by the <input> paranmeter of gl MrexConbi ner Col or Arg() and
gl MrexConbi ner Al phaArg():
GL_MIEX_COMVBI NER_| NPUT_ZERO ??? 0x9040
GL_MIEX_COMVBI NER_| NPUT_FACTOR ??? 0x9041 /* Blend factor */
GL_MTIEX_COMBI NER | NPUT_DI FFUSE ??? 0x9042 /* Diffuse color */
GL_MIEX_COVBI NER_| NPUT_PREVCOMBI NER ??? 0x9043 /* Qutput of
previ ous conbi ner */
GL_MIEX_COVBI NER_| NPUT_TEXTUREO ??? 0x9044 /* Miltitexture Tex0 */
GL_MIEX_COWVBI NER_| NPUT_TEXTUREL ??? 0x9045 /* Miultitexture Texl */
<reserve enuns for 32 textures>
GL_MTEX_COMBI NER_|I NPUT_TEXTURELOD ??? 0x9064 /* Fractional conponent
of TextureLQOD
conput ation, allow ng
for very flexible
m pmappi ng effects */

Accepted by the <operation> paraneter of gl MlexConbi ner Col or Op() and
gl MrexConbi ner Al phaQOp() :

GL_MTEX_COMBI NER_OP_ADD 2?? 0x9070 /* (AO*AL) + (A2*A3) */
GL_MTIEX_COMBI NER_OP_ADDTI MES2 227 0x9071 /* ((AO*Al) + (A2*A3)) << 1 */
GL_MTIEX_COMBI NER_OP_ADDT| MES4 227 0x9072 /* ((AO*Al) + (A2*A3)) << 2 */
GL_MTIEX_COMBNI ER_OP_ADDSI GNED 2?7 0x9073 /* (AO*AL) + (A2*A3) - 128 */
GL_MIEX_COMBI NER_OP_MUX 2?27 0x9074 /* (AO*AL) or (A2*A3) */
GL_MTEX_COMBI NER_OP_ADDCOMPLEMENT 2?2 0x9075 /* ~((AO*AL) + (A2*A3)) */
GL_MTEX_COMBI NER_OP_ADDS| GNEDTI MES2 2?7 0x9076 /* ((AO*AL) + (A2*A3) - 128) << 1 */

40

NVIDIA Corporation Advanced OpenGL Development

F. Secondary Color Specification

XXX — Prelimnary

Nanme
secondary_col or

Name Strings
G._EXT_secondary_col or

Ver si on
$Dat e: 1998/ 04/ 23 04:51:41 $ $Revision: 1.5 $

Nunber
145

Dependenci es
Ei t her EXT_separate_specul ar_color or QpenG 1.2 is required, to specify
the "Col or Sunt stage and other handling of the secondary color. This is
witten against the 1.2 specification (avail able from ww. opengl.org).

Overvi ew
This extension allows specifying the RGB conponents of the secondary
color used in the Color Sum stage, instead of using the default
(0,0,0,0) color. It applies only in RGBA node and when LIGHTING is
di sabl ed.

| ssues
* Can we use the secondary al pha as an explicit fog weighting factor?

1SVs prefer a separate interface (see G._EXT _fog_coord). The current
interface specifies only the R@&B el enents, |eaving the option of a
separate extension for SecondaryCol or4() entry points open.

There is an unpl easant asymmetry with Color3() - one assunmes A =
1.0, the other assunes A = 0.0 - but this appears unavoi dabl e gi ven
the 1.2 color sum specification |anguage. A ternatively, the color
sum | anguage could be rewitten to not sum secondary A

* What about multiple "color iterators” for use w th aggrandized
mul titexture inplenentations?

We may need this eventually, but the secondary color is well defined
and a nore generic interface doesn't seemjustified now

* Interleaved array formats?
No. The multiplicative explosion of formats is too great.

* Do we want to be able to query the secondary col or val ue? How does it
interact with |ighting?

The secondary color is not part of the G state in the
separ at e_specul ar _col or extension. It can't be queried or obtained
vi a feedback.

Si nce the secondary_col or extension is just to serve during

transition to fragnent lighting, let's not go overboard - it needs
to be in the G state, but not nuch beyond that.

41

NVIDIA Corporation Advanced OpenGL Development

New

Procedures and Functions

voi d SecondaryCol or 3[bsi fd ubusui] EXT(T conmponent s)

voi d SecondaryCol or 3[bsi fd ubusui] VEXT(T conponent s)

voi d Secondar yCol or Poi nt er EXT(i nt size, enumtype, sizei stride,
voi d *pointer)

Tokens

Accept ed by the <cap> paraneter of Enable, D sable, and |IsEnabl ed,
and by the <pnanme> paraneter of GCetBool eanv, Getlntegerv, GetFloatv,
and Get Doubl ev:

COLOR_SUM EXT 27?

Accept ed by the <pname> paraneter of GetBool eanv, GCetlntegerv,
Cet Fl oat v, and GCet Doubl ev:

CURRENT SECONDARY_COLCR EXT 227
SECONDARY_COLOR ARRAY_SI ZE_EXT 227
SECONDARY_COLOR ARRAY TYPE_EXT 227

SECONDARY_COLOR_ARRAY_STRI DE_EXT 277
Accept ed by the <pnanme> paraneter of GetPointerv:
SECONDARY_COLOR ARRAY POl NTER EXT ??2?

Accepted by the <array> paraneter of EnabledientState and
Di sabled ient State:

SECONDARY_COLOR_ARRAY EXT 227

Additions to Chapter 2 of the 1.2 Draft Specification (Qoen@ Qperation)

These changes describe a new current state type, the secondary color, and
the comands to specify it:

(2.6, p. 12) Second paragraph changed to:

"Each vertex is specified with two, three, or four coordinates. In
addition, a current nornmal, current texture coordi nates, current
color, and current secondary color may be used in processing each
vertex."

Third paragraph, second sentence changed to:

"These associated colors are either based on the current col or and
current secondary color, or produced by |ighting, depending on
whet her or not lighting is enabled."

2.6.3, p. 19) First paragraph changed to

"The only GL conmmands that are allowed within any Begin/End pairs
are the commands for specifying vertex coordi nates, vertex col ors,
normal coordi nates, and texture coordi nates (Vertex, Color,
Secondar yCol or EXT, 1ndex, Normal, TexCoord)..."

(2.7, p. 20) Starting with the fourth paragraph, change to:

"Finally, there are several ways to set the current color and
secondary color. The GL stores a current single-valued col or index
as well as a current four-val ued RGBA col or and secondary col or.
Either the index or the color and secondary color are significant
depending as the GL is in color index node or RGBA node. The node
selection is made when the GL is initialized.

42

NVIDIA Corporation Advanced OpenGL Development

The commands to set RGBA col ors and secondary colors are

voi d Col or[34][bsifd ubusui] (T conponents)
voi d Col or[34][bsifd ubusui]v(T conmponents)
voi d SecondaryCol or 3[bsi fd ubusui] EXT(T conponents)
voi d SecondaryCol or 3[bsi fd ubusui] VEXT(T conponent s)

The col or command has two maj or variants: Color3 and Col or4. The
four value versions set all four values. The three val ue versions
set R G and B to the provided values; Ais set to 1.0. (The
conversion of integer color conponents (R, G B, and A) to

fl oati ng-point values is discussed in section 2.13.)

The secondary col or command has only the three val ue versions.
Secondary A is always set to 0.0.

Versions of the Col or and SecondaryCol or EXT commands that take
fl oati ng-poi nt val ues accept values nomnally between 0.0 and
1.0...."

The | ast paragraph is changed to read:

"The state required to support vertex specification consists of four
fl oati ng-poi nt nunbers to store the current texture coordinates s,
t, r, and q, four floating-point values to store the current RGBA
color, four floating-point values to store the current RGBA
secondary col or, and one floating-point value to store the current
color index. There is no notion of a current vertex, so no state is
devoted to vertex coordinates. The initial values of s, t, and r of
the current texture coordinates are zero; the initial value of g is
one. The initial current normal has coordinates (0,0,1). The initial
RGBA color is (RGB,A =(1,1,1,1). The initial RGBA secondary
color is (RGB,A =(0,0,0,0). The initial color index is 1.'

- (2.8, p. 21) Added secondary col or conmand for vertex arrays:
Change first paragraph to read:

"The vertex specification comrands described in section 2.7 accept
data in alnost any format, but their use requires many conmmand
executions to specify even sinple geonetry. Vertex data may al so be
placed into arrays that are stored in the client's address space.

Bl ocks of data in these arrays may then be used to specify multiple
geonetric primtives through the execution of a single G. command.
The client may specify up to seven arrays: one each to store edge
flags, texture coordinates, colors, secondary colors, color indices,
normal s, and vertices. The commands"

Add to functions listed following first paragraph:

voi d Secondar yCol or Poi nt er EXT(i nt size, enumtype, sizei stride,
voi d *pointer)

Add to table 2.4 (p. 22):
Command Si zes Types

Secondar yCol or Poi nt er EXT 3,4 byt e, ubyt e, short, ushort,int, uint,
fl oat, doubl e

Starting with the second paragraph on p. 23, change to add
SECONDARY_COLOR_ARRAY_EXT:

43

NVIDIA Corporation Advanced OpenGL Development

"An individual array is enabled or disabled by calling one of

voi d Enabl el i ent St at e(enum arr ay)
voi d Di sabl edient State(enum array)

with array set to EDGE_FLAG ARRAY, TEXTURE_COORD ARRAY, COLOR _ARRAY,
SECONDARY_COLOR _ARRAY_EXT, | NDEX_ARRAY, NORVAL_ARRAY, or
VERTEX_ARRAY, for the edge flag, texture coordinate, color,
secondary col or, color index, normal, or vertex array, respectively.

The ith elenent of every enabled array is transferred to the GL by
cal l'ing

void ArrayEl ement (int i)

For each enabled array, it is as though the correspondi ng comand
fromsection 2.7 or section 2.6.2 were called with a pointer to
element i. For the vertex array, the corresponding command is

Vert ex<si ze><t ype>v, where <size> is one of [2,3,4], and <type> is
one of [s,i,f,d], corresponding to array types short, int, float,
and doubl e respectively. The correspondi ng comrands for the edge
flag, texture coordinate, color, secondary color, color index, and
nornmal arrays are EdgeFl agv, TexCoor d<si ze><t ype>v,

Col or <si ze><t ype>v, SecondaryCol or 3<t ype>vVEXT, |ndex<type>v, and
Nor mal <t ype>v, respectively..."

Change pseudocode on p. 27 to disable secondary color array for
canned interleaved array formats. After the lines

Di sabl ed i ent St at e(EDGE_FLAG_ARRAY) ;
Di sabl ed i ent St at e(| NDEX_ARRAY) ;

insert the line
Di sabl ed i ent St at e(SECONDARY_COLOR_ARRAY_EXT) ;

Substitute "seven" for every occurrence of "six" in the final paragraph
on p. 27.

- (2.12, p. 41) Add secondary color to the current rasterpos state.
Change the | ast paragraph to read

"The current raster position requires five single-precision
floating-point values for its x_w, y_w and z_w w ndow coordi nat es,
its wc clip coordinate, and its eye coordinate distance, a single
valid bit, a color (RGBA color, RGBA secondary col or, and col or

i ndex), and texture coordinates for associated data. In the initial
state, the coordinates and texture coordinates are both $(0,0,0,1)$,
the eye coordinate distance is 0, the valid bit is set, the

associ ated RGBA color is $(1,1,1,1)%, the associ ated RGBA secondary
color is $(0,0,0,0)%, and the associated color index color is 1. In
RGBA node, the associated color index always has its initial val ue;
in color index nbde, the RGBA col or and secondary col or al ways

mai ntain their initial values."

- (2.13, p. 43) Change second paragraph to acknow edge two col ors when
lighting is disabl ed:

"Next, lighting, if enabled, produces either a color index or

primary and secondary colors. If lighting is disabled, the current
color index or current color (primary color) and current secondary

44

NVIDIA Corporation Advanced OpenGL Development

color are used in further processing. After lighting, RGBA colors
are clanped..."

- (Figure 2.8, p. 42) Change to show prinmary and secondary RGBA colors in
both Iit and unlit paths.

- (2.13.1, p. 44) Change so that the second paragraph starts:
"Lighting nay be in one of two states:
1. Lighting Of. In this state, the current color and current secondary
color are assigned to the vertex primary color and vertex secondary
col or, respectively.

2. ...

- (2.13.1, p. 48) Change the sentence follow ng equation 2.5 (for spot_i)
so that color sumis inplicitly enabl ed when SEPARATE SPECULAR COLCR i s
set:

"Al conputations are carried out in eye coordinates. Wen c_es =
SEPARATE_SPECULAR COLOR, it is as if color sum (see section 3.9) were
enabl ed, regardl ess of the value of COLOR _SUM EXT."

- (3.9, p. 136) Change the first paragraph to read
"After texturing, a fragnment has two RGBA colors: a primary color c_pri
(which texturing, if enabled, may have nodified) and a secondary col or
c_sec.
If color sumis enabled, the conmponents of these two colors are summed
to produce a single post-texturing RGBA color ¢ (the A conponent of the
secondary color is always 0). The conponents of c¢ are then clanped to
the range [0,1]. If color sumis disabled, then c_pri is assigned to the
post texturing color. Color sumis enabled or disabled using the generic
Enabl e and D sabl e commands, respectively, with the synbolic constant
COLOR_SUM EXT.

The state required is a single bit indicating whether color sumis
enabl ed or disabled. In the initial state, color sumis disabled."

Additions to Chapter 6 of the 1.2 Specification (State and State Requests)
None
Additions to the GX Specification

None (we don't expect this extension to be used on GX inplenentations; if
it is, new GX enunerants for the secondary color will be introduced).

G.X Prot ocol
None (as for the G.X Specification)
Errors

INVALI D VALUE is generated if SecondaryCol or Poi nt er EXT paraneter <size>
is not 3.

INVALID ENUM i s generated if SecondaryCol or Poi nt er EXT paraneter <type>

is not BYTE, UNSIGNED BYTE, SHORT, UNSI GNED SHORT, | NT, UNSI GNED_I NT,
FLOAT, or DQOUBLE.

45

Advanced OpenGL Development

I NVALI D VALUE is generated if SecondaryCol or Poi nt er EXT paraneter

<stride> is negative.

New St at e

(table 6.5, p. 195)

Get Val ue Type Get Command Initial Value Description Sec Attribute
CURRENT_SECONDARY_COLOR EXT C Get I nt egerv, (0,0,0,0) Current 2.7 current

Get Fl oat v secondary col or
(table 6.6, p. 197)
Get Val ue Type Get Command Initial Value Description Sec Attribute
SECONDARY_COLOR_ARRAY_EXT B | sEnabl ed Fal se Sec. color array enable 2.8 vertex-array
SECONDARY_COLOR_ARRAY_S| ZE_EXT Z+ Get I nt egerv Sec. colors per vertex 2.8 vertex-array
SECONDARY_COLOR_ARRAY_TYPE_EXT Z8 GetIntegerv FLOAT Type of sec. color conponents 2.8 vertex-array
SECONDARY_COLOR_ARRAY_STRI DE_EXT Z+ Getlntegerv O Stride between sec. colors 2.8 vertex-array
SECONDARY_COLOR_ARRAY_PO NTER_EXT Y Get Pointerv 0 Pointer to the sec. color array 2.8 vertex-array
(table 6.8, p. 198)
Cet Val ue Type Get Conmmand Initial Value Descri ption Sec Attribute
COLOR_SUM EXT B | sEnabl ed Fal se True if color 3.9 fog/enable

46

sum enabl ed

NVIDIA Corporation Advanced OpenGL Development

G. Fog Coordinate Specification

XXX - Not conplete yet!!!

Nanme
fog_coord

Name Strings
GL_EXT_fog_coord

Ver si on
$Dat e: 1998/ 04/09 22:09:14 $ $Revision: 1.2 $

Number
149

Dependenci es
Open@ 1.1 is required. fog_coord is witten against the OpenGL 1.2
speci fication (available from ww. opengl.org) to nake the spec
forward-| ooking, although no 1.2 features are required.

Overvi ew
This extension allows specifying an explicit per-vertex fog coord to be
used in fog conputations, rather than using a fragnent depth-based fog
equati on.
| ssues
* Shoul d the specified value be used directly as the fog weighting factor,
or in place of the z input to the fog equations?

As the z input, adding nore flexibility at potential perfornance
cost .

* Do we want vertex array entry points? Interleaved array fornats?

Yes for entry points, no for interleaved formats, follow ng the
argunment for secondary_col or.

* Wi ch scal ar types shoul d FogCoord accept? The full range, or just the
unsi gned and float versions? At the nonent it follows |ndex(), which
takes unsi gned byte, signed short, signed int, float, and double.

Since we're now specifying a nunber which behaves |ike an eye-space
di stance, rather than a [0,1] quantity, integer types are |ess
useful . However, restricting the commands to floating-point forns
only introduces sone nonorthogonality.

Restrict to only float and double, for now.

* Interpolation of the fog coordinate may be perspective-correct or not.
Shoul d this be affected by PERSPECTI VE_CORRECTI ON_HI NT, FOG H NT, or
anot her to-be-defined hint?

PERSPECT! VE_CORRECTI ON_HI NT; this is already defined to affect all
interpolated paraneters. Admttedly this is a loss of orthogonality.

* Should the current fog coordi nate be queryabl e?
Yes; Get Fl oat v(FOG_COORDI NATE) .

* Control the fog coordinate source via an Enable instead of a fog
par anet er ?

No. We might want to add nore sources |ater.
* Should the fog coordinate be restricted to non-negative val ues?

Per haps. Eye-coordi nate di stance of fragnents will be non-negative
due to clipping. Specifying explicit negative coordinates may result

47

NVIDIA Corporation Advanced OpenGL Development

in very large conputed f values, although they are defined to be
clipped after conputation.

* Use existing DEPTH enum i nstead of FRAGVENT_DEPTH? Change nane of
FRAGVENT_DEPTH t o FOG_FRAGVENT_DEPTH?

Undeci ded.

New Procedures and Functions
voi d FogCoord[fd] EXT(T coord)
voi d FogCoord[fd] vEXT(T coord)
voi d FogCoor dPoi nt er EXT(enum type, sizei stride, void *pointer)

New Tokens
Accepted by the <parane paraneter of Fogi and Fogf:
FOG_COORDI NATE_SOURCE ???
FOG_COORDI NATE ???
FRAGVENT_DEPTH ???

Accepted by the <array> paraneter of EnableCientState and
Di sabl eCl i ent State:

FOG_FACTOR_ARRAY EXT 277

Additions to Chapter 2 of the 1.2 Draft Specification (OpenG. Operation)
These changes describe a new current state type, the fog coordinate, and the
comands to specify it:

- (2.6, p. 12) Second paragraph changed to:

"Each vertex is specified with two, three, or four coordinates. In
addition, a current normal, current texture coordinates, current
color, and current fog coordinate may be used in processing each
vertex."

- 2.6.3, p. 19) First paragraph changed to

"The only GL conmands that are allowed w thin any Begin/ End pairs
are the conmands for specifying vertex coordi nates, vertex colors,
normal coordinates, texture coordi nates, and fog coordi nates (Vertex,
Col or, Index, Nornal, TexCoord, FogCoord)..."

- (2.7, p. 20) Insert the follow ng paragraph followi ng the third
par agraph describing current normals:

" The current fog factor is set using
voi d FogCoord[fd] EXT(T coord)
voi d FogCoord[fd] vEXT(T coord)."

The | ast paragraph is changed to read:

"The state required to support vertex specification consists of four
floating-point nunbers to store the current texture coordinates s
t, r, and gq, one floating-point value to store the current fog
coordi nate, four floating-point values to store the current RGBA
color, and one floating-point value to store the current col or
index. There is no notion of a current vertex, so no state is
devoted to vertex coordinates. The initial values of s, t, and r of
the current texture coordinates are zero; the initial value of qis
one. The initial fog coordinate is zero. The initial current normal
has coordinates (0,0,1). The initial RGBA color is (R GB/A =
(1,1,1,1). The initial color index is 1."

- (2.8, p. 21) Added fog coordi nate command for vertex arrays:
Change first paragraph to read:
"The vertex specification conmands described in section 2.7 accept

data in alnpst any format, but their use requires many command
executions to specify even sinple geonetry. Vertex data may al so be

48

NVIDIA Corporation Advanced OpenGL Development

placed into arrays that are stored in the client's address space.

Bl ocks of data in these arrays may then be used to specify nultiple
geonetric primtives through the execution of a single G command.
The client may specify up to seven arrays: one each to store edge
flags, texture coordinates, fog coordinates, colors, color indices,
normal s, and vertices. The commands"

Add to functions listed follow ng first paragraph:
voi d FogCoor dPoi nt er EXT(enum type, sizei stride, void *pointer)
Add to table 2.4 (p. 22):

Comrand Si zes Types

FogCoor dPoi nt er EXT 1 float, doubl e

Starting with the second paragraph on p. 23, change to add
FOG_FACTOR_ARRAY_EXT:

"An individual array is enabled or disabled by calling one of

voi d Enabl ed i ent St at e(enum array)
voi d Di sabl ed i ent State(enum array)

with array set to EDGE_FLAG ARRAY, TEXTURE_COORD_ARRAY,
FOG_FACTOR_ARRAY_EXT, COLOR_ARRAY, | NDEX_ARRAY, NORMAL_ARRAY, or
VERTEX_ARRAY, for the edge flag, texture coordinate, fog coordinate,
color, color index, normal, or vertex array, respectively.

The ith el ement of every enabled array is transferred to the GL by
call'ing

void ArrayEl enent (int i)

For each enabled array, it is as though the correspondi ng command
fromsection 2.7 or section 2.6.2 were called with a pointer to
elenent i. For the vertex array, the corresponding comand is

Vert ex<si ze><type>v, where <size> is one of [2,3,4], and <type> is
one of [s,i,f,d], corresponding to array types short, int, float,
and doubl e respectively. The correspondi ng commands for the edge
flag, texture coordinate, fog coordinate, color, secondary color
color index, and normal arrays are EdgeFl agv, TexCoord<si ze><type>v,
FogCoor d<t ype>v, Col or<si ze><type>v, |ndex<type>v, and

Nor mal <t ype>v, respectively..."

Change pseudocode on p. 27 to disable fog coordinate array for canned
interleaved array formats. After the lines

Di sabl ed i ent St at e(EDGE_FLAG_ARRAY) ;
Di sabl ed i ent St at e(| NDEX_ARRAY) ;

insert the line
Di sabl ed i ent St at e(FOG_FACTOR_ARRAY_EXT) ;

Substitute "seven" for every occurrence of "six
on p. 27.

in the final paragraph

- (2.12, p. 41) Add fog coordinate to the current rasterpos state.
Change the first sentence of the first paragraph to read
"The state required for the current raster position consists of
three wi ndow coordinates x_w, y_w, and z_w, a clip coordinate w_c
val ue, an eye coordi nate distance, a fog coordinate, a valid bit,
and associ ated data consisting of a color and texture coordi nates."
Change the | ast paragraph to read

"The current raster position requires six single-precision

49

NVIDIA Corporation Advanced OpenGL Development

floating-point values for its x_w, y_w, and z_w w ndow coordi nates,
its wec clip coordinate, its eye coordinate distance, and its fog
coordinate, a single valid bit, a color (RGBA color and col or

index), and texture coordinates for associated data. In the initial
state, the coordinates and texture coordinates are both (0,0,0,1),
the fog coordinate is 0, the eye coordinate distance is 0, the valid
bit is set, the associated RGBA color is (1,1,1,1), and the

associ ated color index color is 1. In RGBA node, the associated
color index always has its initial value; in color index node, the
RGBA col or always maintains its initial value."

- (3.10, p. 139) Change the second and third paragraphs to read
"This factor f nay be conputed according to one of three equations:"
f

f
f

exp(-d*c) (3.24)
exp(-(d*c)”~2) (3.25)
(e-c)/(e-s) (3.26)

If the fog source (as defined below) is FRAGVENT_DEPTH, then c is
the eye-coordinate distance fromthe eye, (0 0 0 1) in eye

coordi nates, to the fragment center. |If the fog source if

FOG_COORDI NATE, then c is the interpolated value of the fog
coordinate for this fragment. The equation and the fog source, along
with either d or e and s, is specified with

voi d Fog{if}(enum pnane, T param;
voi d Fog{if}v(enum pname, T parans);

I f <pnane> is FOG_MODE, then <parank nmust be, or <parank nmust point
to an integer that is one of the synmbolic constants EXP, EXP2, or

LI NEAR, in which case equation 3.24, 3.25, or 3.26,, respectively,
is selected for the fog calculation (if, when 3.26 is selected, e =
s, results are undefined). If <pnanme> is FOG_COORDlI NATE_SOURCE, then
<paran® is or <parans> points to an integer that is one of the
synbolic constants FRAGVENT_DEPTH or FOG COORDI NATE. |f <pnanme> is
FOG _DENSI TY, FOG START, or FOG END, then <parant is or <parans>
points to a value that is d, s, or e, respectively. If dis
specified | ess than zero, the error INVALID VALUE results."

- (3.10, p. 140) Change the | ast paragraph precedi ng section 3.11
to read

"The state required for fog consists of a three valued integer to
sel ect the fog equation, three floating-point values d, e, and s, an
RGBA fog color and a fog color index, a two-valued integer to select
the fog coordinate source, and a single bit to indicate whether or
not fog is enabled. In the initial state, fog is disabled,

FOG_COORDI NATE_SOURCE i s FRAGVENT_DEPTH, FOG MODE is EXP, d = 1.0, e
=1.0, and s = 0.0; Cf = (0,0,0,0) and i_f=0."

Additions to Chapter 6 of the 1.2 Specification (State and State Requests)
None

Additions to the GLX Specification
None (we don't expect this extension to be used on GLX inplenentations; if
it is, new GX enunerants for the fog coordinate will be introduced).

GLX Protocol
None (as for the GLX Specification)

Errors
I NVALI D_ENUM i s generated if FogCoordPoi nter EXT paraneter <type> is not
FLOAT or DOUBLE.

I NVALI D_VALUE is generated if FogCoordPoi nter EXT paraneter <stride> is
negati ve.

New St at e

Get Val ue Type Get Command Initial Value Description Sec Attribute

50

NVIDIA Corporation Advanced OpenGL Development

(table 6.6, p. 196)
For each of the 4 | NDEX_ARRAY* table entries, add a correspondi ng

FOG_FACTOR_ARRAY* _EXT entry with the sane type, get command, initial
val ue, section, and attribute, and with "fog coordi nate" replacing "index"

and "indice" in its description.

(table 6.8, p. 198)

FOG_COORDI NATE R Get | nt egerv, 0 Current 3.10 fog
Get Fl oat v fog coordinate

FOG_COORDI NATE_SOURCE Z2 Getl ntegeryv, FRAGVENT_DEPTH Source of fog 3.10 fog
Cet Fl oat v coord for

fog cal cul ation

51

