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Chris Hecker

Texture

Mapping Part 1V:
Approximations

nowing, understanding, and
following through on your
goals are key parts of soft-
ware development. Often, I'll
go into a project with a per-
fectly valid set of goals, only
to get distracted along the
way and produce something
that meets an entirely different set of
goals, but completely misses my origi-
nal ones. This phenomenon seems to
be pretty common in the game industry
as well, where companies go into a pro-
ject with the goal of creating a great
game, but end up creating a nice piece
of technology with no game play.

Similarly, our goal during this
series is not to produce a perspective
texture mapper. Surprise! Our goal is
actually to draw perspective-texture-
mapped triangles on the screen quickly.
A subtle but important difference exists
between these two goals. As with most
things in real-time PC graphics, the
result on the screen is the only thing
that matters, not how you got it there.
We can exploit the difference between
what looks right and what is right and
get big speedups in our code.

In other words, if a beautifully
written, mathematically perfect texture
mapper and a total hacked piece of junk
produce the exact same results on the
screen (including avoiding jitter and all
the other things we've been learning),
and the hack is 10 times faster, then the
choice is clear if you're interested in
speed. It's important to note that this
does not mean we've been wasting our
time learning about “correct” perspec-
tive texture mapping. In fact, it's just
the opposite. Now that we intimately

understand how the math works, we're
in a much better position to throw it all
out and cut corners.

In Our Last Episode...

Let’s quickly summarize and tie up loose
ends from my last column in this series,
“Perspective Texture Mapping, Part Il1:
Endpoints and Mapping” (Behind the
Screen, Aug./Sept. 1995). The summary
is pretty short: we've developed a com-
plete, high-quality sub-pixel-accurate
perspective texture mapper.

The only loose end we've got left
(besides performance, which is the
main subject of this article) concerns
the real-to-integer texture coordinate
mapping. When we left off, we had a
bug in this mapping and we needed to
choose a rounding rule to get the cor-
rect mapping. | hinted that we already
had the information available to make
the decision on which rounding rule to
use, but I didn't give the answer. As
many of you probably guessed, the gra-
dients are the key to making this deci-
sion (which implies you must switch
between rounding rules at runtime—
and this is indeed the case). Unfortu-
nately, limited space keeps me from
going into the derivation of the solu-
tion. If you're interested, you can pick
up the sample code | mention at the
end of this column on the Game Devel-
oper ftp site. You'll find a big comment
block explaining things there.

Divided We Fall

Finally I'm ready to make good on the
second half of my two-part promise:
the first part of which was to develop
an easy-to-understand perspective cor-
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rect texture mapper, and the second to
speed it up to interactive performance.
In our efforts to speed up the
mapper the obvious question is,
“Where is the code currently spending
its time?” | ran a profiler on it and
ended up with what 1 like to call the
perfect profile—almost all our time
(96%) is spent in one function,
DrauwScanLine. The nice thing about a
profile like this is that your optimiza-
tion work in that function, sometimes
called the hotspot, is very highly lever-
aged. In other words, every little bit
you speed up the hotspot increases the
overall performance by a lot. It's not
surprising that DrawScanLine is the cul-
prit because it contains the pixel loop,
but it's always good to check our
assumptions and gather some real data.
Listing 1 gives us a closer look at
DrawScanLine inner loop. In it, we see
that the function is doing a divide and
two multiplies per pixel to figure out
the texture coordinates, a multiply to
calculate the texture offset, and a few
adds. The divide is probably the major
sink here. Divides are much slower than
multiplies on most processors, and mul-

Figure 1. The Perspective Curve

The divide is the crux of the per-
spective texture mapper. It takes the
linear interpolations of 1/z, u/z, and v/z
and turns them into the nonlinear curve

Listing 1. The Inner Loop

while(Width-- > 0) {
float Z = 1/0OneOverZ;
int U = UOverZ * Z + 0.5;
int V = VOverZ * Z + 0.5;

*(pDestBits++) = x(pTextureBits + U + (V * TextureDeltaScan));

OneOverZ += Gradients.dOneOverZdX;
UOverZ += Gradients.dUOverZdX;
VOverZ += Gradients.dVOverZdX;

tiplies are generally slower than adds. If
we comment out the divide per pixel
and do a linear interpolation between
the left and right edge, the mapper per-
forms seven times faster in my test (and
of course looks totally wrong because
there's no perspective correction).
Obviously, getting rid of the divide
helps a lot. However, to get rid of the
divide and keep the same visual quality
we need to know exactly what the
divide is doing there in the first place.
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that samples pixels close together when
the polygon is near the eyepoint and
samples farther apart when the polygon
is distant. If the polygon is slanted so
that it's close on one end and distant on
the other, the divide smoothly moves
from close to separated samples. Figure
1 shows a plot of screen x versus sam-
pled u for a typical perspective mapped
scanline. As X increases, u starts
increasing slowly and then grows much
quicker. Obviously, this data is from a

polygon that's close at low values of x
and distant at larger values.

This curve (it's different for each
polygon and scanline, in general) is
what makes perspective mapping look
correct, so the trick is to approximate
the curve without using a divide and
without adversely affecting our visual
quality.

The Big Three

When | say we want to approximate the
perspective curve, | mean we want to
use alternate equations that will pro-
duce the same—or very close to the
same—output (the u value shown in
Figure 1) for the same input (x, as
shown in Figure 1), but hopefully will
be more efficient than our algorithm
with its divides.

Three approximations to the per-
spective texture mapping equations are
commonly used: subdividing affine,
quadratic, and lines-of-constant-z.

I’'m going to talk about lines-of-
constant-z first because it's very differ-
ent from the other two. First, “lines-of-
constant-z” is an awkward name. Some
people choose to call it “free-direction
texture mapping,” which is a bit easier
to say but not quite as precise. Basically,
a lines-of-constant-z rasterizer tries to
take advantage of the neat fact that
there are straight and parallel lines that
have a constant z through any planar
polygon. Imagine you're sliding a plane
that's perpendicular to the z-axis back
through your polygon. The plane will
slice the polygon in a series of parallel
lines as it moves through the depth
range occupied by the polygon. All the
pixels along one of these lines will have
the z value of the plane, so the line has
a “constant z.”

Now, if you look at the math
behind our projection, when z is con-
stant, our equation turns into a linear
interpolation (the perspective curve
from one point on this line to the next
is a line itself), which is quick and easy
to compute and has no divides in the
pixel loop. The down side is that in
general you'll be interpolating along a
diagonal line in the destination instead
of across a nice horizontal scanline



(walls and floors are special cases where
the lines-of-constant-z are vertical and
horizontal, respectively).

This diagonal (or free-direction)
interpolation causes three major prob-
lems. First, if your diagonal lines don't
abut properly you'll get dropouts and
overwrites inside your polygon. This is
solvable if you're careful.

Second, unless you obey a strict fill
convention, you'll get the same kind of
dropouts and overwrites between poly-
gons. This is much harder to fix than
the intra-polygon problems, but it’s still
solvable.

Finally, and this one is the kiss of
death as far as I'm concerned, it is total-
ly impossible to achieve subpixel accu-
racy with a lines-of-constant-z texture
mapper. To achieve subpixel accuracy
we must always sample the texture from
the pixel centers of the destination but
our arbitrary line-of-constant-z doesn’t
hit the pixel center in the destination.
However, you can't step off the line-of-
constant-z to the pixel center or you'll
need to divide to take the nonconstant-
z step into account. Damned if you do,
damned if you don't.

If you don't care about subpixel
accuracy (insert flame about jittering
and sloppy textures here), the lines-of-
constant-z technique might be for you.
As an added bonus, you get depth cuing
effects like fog almost for free—you
already know the depth of the current
line, and the depth, by definition, is
going to stay constant. So you can com-
pute your fog value at the start and use
it along the entire line instead of at
every pixel.

The next two techniques, subdivid-
ing affine and quadratic, are based on a
more straightforward approximation of
the perspective curve. Both try to fit
easy-to-interpolate curves to the more
complex perspective curve. Subdividing
affine does a piecewise linear approxima-
tion, fitting a number of line segments to
the curve, and quadratic fits a quadratic
curve to the perspective curve.

We're going to use a subdividing
affine curve for our approximation, so
before going into detail on it I'll go over
the quadratic technique.

Quadratics

Most people remember quadratic equa-
tions as parabolas from algebra. A qua-
dratic in x is:

f(x)=ax*+bx+c (1)

This equation will graph a parabo-
la or a line on the x and f(x) axes. The
coefficients a, b, and ¢ determine the

shape and position of the parabola on
the graph, and we use these three
“degrees of freedom” to attempt to fit a
parabola to the perspective curve. We
use the normal perspective mapper to
interpolate down the edges of the poly-
gon so they'll be precise, and use the
quadratic to interpolate across the scan-
line (where we're spending our time in
DrauwScanLine). At each pixel on the
scanline, we want to be able to feed in
our screen position, x, and the quadratic
equation should produce our texture
coordinate as its value (f(x) in Equation

1). We need two quadratics—one to
produce the u texture coordinate from
X, and the other to produce the v coor-
dinate from x.

Because we have three degrees of
freedom, we can choose to match exact-
ly any three characteristics of the per-
spective curve, and approximate the
other characteristics. For example, we
might choose to exactly interpolate the
two endpoints, and spend our last
degree of freedom on exactly matching
the first derivative, or slope, of the per-
spective curve as it enters or leaves one
of the endpoints—we can't match both
derivatives because that would cost us
two degrees of freedom, one more than
we have left if we're going to hit the
endpoints exactly. We could even inter-
polate one endpoint and exactly match
the first and second derivative exactly at
that point. Or we might spend all three
degrees of freedom interpolating three
points on the curve exactly, like the two
endpoints and the middle point. We'll
do the derivation for the latter approxi-
mation to show how it's done.

To figure out the quadratic curve
that interpolates the two endpoints and
the midpoint and produces the u texture
coordinate given x, we start by writing
down the equations we know. We
assume x goes from 0 to 1 for simplicity.
We need to solve for u at x = 0, 0.5, and
1 using the perspective divide to give us
three known values, u,, u,, and u,,
respectively, so we can solve for a, b, and
¢, the three unknowns. We plug these
values into Equation 1 to give us three
equations in three unknowns:

£(0) =uy =a0? +b0+c=¢

~2
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and:

f(1)=u2 =al’+bl+c

=a+h+¢
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We then solve the simultaneous Listing 2. The Subdividing Affine DrawScanLine (Continued on p. 24)
equations for a, b, and ¢ in terms of u,,

u,, and u,, and after a bit of algebra we void DrawScanLine_suba( dib_info const &Dest,
gradients_fx_fl_a const &Gradients,

get: edge_fx_fl_a *plLeft, edge_fx_fl_a *pRight,
a= 2U0 _ 4U1 + 2U2 . dib_info const &Texture )
int XStart = pLeft->X;
b=-3u, +4u, -u int Width = pRight->X - XStart;
o 1~ U prig
and: char unsigned *pDestBits = Dest.pBits;
char unsigned * const pTextureBits = Texture.pBits;

c=u pDestBits += pLeft->Y * Dest.DeltaScan + XStart;

0 long TextureDeltaScan = Texture.DeltaScan;

Now, if we wanted to, we could use e .
. . int const ineLength = 8;

these coefficients and solve the quadratic . e
directly at each point on the scanline float OneOverZLeft = pLeft->OnelverZ;
(we'd actually do the math using x = 0, at :103" Ugve'ZLe;t = PLe:t'>Ugve"Z;

. . loat VOverZLeft = pLeft->V0OverZ;
X = width/2, and x = width so we ! P !
wouldn’t have to scale our x values float dOneOverZdXAff = Gradients.dOneOverZdX * AffineLength;
between 0 and l), but that means we'd float dUOverZdXAff = Gradients.dUOverZdX * AffinelLength;

. T float dVOverZdXAff = Gradients.dVOverZdX * Affinelength;
be doing a bunch of multiplies per
pixel—probably better than the divide float OneOverZRight = OneOverZLeft + dOneOverZdXAff;
we're Currently do|ng’ but not great float U(]verZRight = UOverZLeft + dUOverZdXAff;

. float VOverZRight = VOverZLeft + dVOverZdXAff;

However, we can use forward differences
to solve the quadratic using only addi- float ZLeft = 1/OneOverZLeft;
tion and the solution for the previous float Uleft = Zleft * UverZleft;
. . . float VLeft = ZLeft * VOverZleft;
pixel. Forward differences are covered in
any good graphics or math textbook, float ZRight, URight, VRight;
but, simply stated, you take f(x+1)-f(x) to fixed6_16 U, V, Deltal, DeltaV;
calcu_late the function’s step based on its if(Width > 0) {
previous value. In the case of our qua- int Subdivisions = Width / AffineLength;

int WidthModLength = Width J AffineLength;

Figure 2. The Quadratic Curve if (!WidthModLength) {
Subdivisions--;

WidthModLength = AffinelLength;
}

while(Subdivisions-- > 0) {
ZRight = 1/OnelverZRight;
URight = ZRight * UOverZRight;
VRight = ZRight * VOverZRight;

U = FloatToFixed16_16(ULeft) + Gradients.dUdXModifier;
V = FloatToFixed16_16(VLeft) + Gradients.dVdXModifier;
Deltal =

FloatToFixed16_16(URight - ULeft)/Affinelength;
DeltaV =

FloatToFixed16_16(VRight - VLeft)/Affinelength;

for(int Counter = 0;Counter < AffineLength;Counter++){
int UInt = U>>16;
int VInt = V>>16;

*(pDestBits++) = *(pTextureBits + UInt +
(VInt * TextureDeltaScan));

U += Deltal;
V += Deltal;
}

Ileft = ZRight;
ULeft = URight;
VLeft = VRight;
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Listing 2. The Subdividing Affine DrawScanLine (Continued from p. 22)

OneOverZRight += dOneOverZdXAff;
UOverZRight += dUOverZdXAff;
VOverZRight += dVOverZdXAff;

}

if(WidthModLength) {

ZRight = 1/(pRight->One0verZ - Gradients.dOneOverZdX);

URight = ZRight *

(pRight->UOverZ - Gradients.dUOverZdX);

WRight = ZRight *

(pRight->V0verZ - Gradients.dVOverZdX);

U = FloatToFixed16_16(ULeft) + Gradients.dUdXModifier;
V = FloatToFixed16_16(VLeft) + Gradients.dVdXModifier;

if(--WidthModLength) {

// guard against div-by-0 for 1 pixel lines

Deltal =

FloatToFixed16_16(URight - Uleft)

/ WidthModLength;
DeltaV =

FloatToFixed16_16(VRight - Vleft)

/ WidthModLength;
}

for(int Counter = 0;

Counter <= WidthModLength;Counter++) {

int UInt = U>>16;
int VInt = V>>16;

*(pDestBits++) = *(pTextureBits + UInt +

(VInt * TextureDeltaScan));

U += Deltal;
V += Deltal;
}

dratic, we need to do “second forward
differences,” where we calculate the for-
ward difference of the function step. In
other words, we calculate the forward
difference of the forward difference.
How does it look? Well, in Figure
2, the blue curve is again the perspective
curve, and the red curve is the quadratic
interpolating the start, middle, and end.
This is a pretty bad case for the quadratic
because the perspective warp is quite
high. On less distorted views the single
quadratic would match up better. You
can also subdivide into multiple quadrat-
ics to better match the curve if you want
to spend the extra setup time. However, |
chose this view because it illustrates a
very significant side effect of the quadrat-
ic approximation—undershoot. If you
look very closely, you'll see the red line
actually dips below u = 0, which means
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we'd read off our texture map and possi-
bly crash. You can figure out when this
will happen and prevent it by subdivid-
ing, but that means even more setup in
addition to setting up the quadratic equa-
tion for both u and v for each scanline.
Overall, the quadratic approximation
is very elegant conceptually, but the prob-
lems of under- and overshoot and the
setup overhead of calculating the coeffi-
cients seem to make it not worth the
trouble. You can also use higher order
curves, like cubics, and the math we've
looked at extends easily. Perhaps we'll
return to quadratics in a later column and
see what we can do with them, but for
now, we'll move on to subdividing affine.

It’s Affine Day
It happens that the method we've cho-
sen is also the simplest. You've probably

already guessed exactly how subdividing
affine texture mappers work from what
I've been describing.

Basically, you solve the real per-
spective equation at a bunch of points
along the scanline, and do a linear
interpolation between those correct
points (affine and linear are virtually
interchangeable in this context). Linear
interpolations are what we've been
doing all along with 1/z, u/z, and v/z,
so | won't go into detail here. Linear
interpolations are very fast, and the
setup isn’t too bad for each affine span.
The only trick is to determine how
often to subdivide; the more you subdi-
vide, the closer your piecewise linear
curve will match the real curve—but the
more overhead you'll have from divides
and per-span setup.

One simple way to subdivide is to
just break up the scanline into equisized
spans. You can also adaptively subdivide
based on the amount of perspective warp
on each span. This issue’s texture map-
per will always subdivide to eight pixel
spans, but we'll look into adaptive subdi-
vision next time. Figure 3 shows a subdi-
viding affine approximation to our

Figure 3. The Subdivided Affine Curve




favorite perspective curve, subdividing
every eight pixels in x.

There are a few nice things about
subdividing affine texture mappers.
First, you can tune the performance
and quality by setting the subdivision
level. This lets you adjust your perfor-
mance on demand (which you might
need to do at runtime, depending on
scene complexity).

Second, you can pretty easily fit all
your interpolants in registers for the
affine spans (a subject I'll cover in more
depth in my next column).

Finally, unlike quadratic approxi-
mation, you'll never under- or over-
shoot with subdividing affine because
like the real perspective curve, the affine
spans are monotonically increasing or
decreasing with the curve. In other
words, depending on your subdivision
granularity and the perspective warp,
you'll sometimes draw the wrong pixels,
but you'll never fetch outside the texture
map or even outside the extents of the
original correct span in texture space.

Sample Code

Listing 2 shows the DrawScanLine func-
tion modified to do subdividing affine
texture mapping. We'll max this out
next time, but even unoptimized it out-
performs the divide-per-pixel routine by
two to four times. We must treat the
last span with care to ensure we interpo-
late the rightmost pixel correctly. You'll
remember from previous articles that
our right edge is actually the left edge of
the next polygon over, so we need to
subtract one pixel from the right edge to
figure out the last pixel in our polygon
and use it in the interpolation.

I've also finally written a texture
mapping test bed so you can simply
compile and run the listings. You can
find it on ftp://ftp.mfi.com/gdmag.
The test has all the texture mappers
we've written so far, so you can see the
jitter from the integer mapper, the
mapping bug from the one we dis-
cussed in the last installment, and so
on. It's a Windows program, but the
code for the texture mappers is

portable, and you’ll be able to see
exactly how they're called. The test bed
is easy to modify—see the readme.txt
file in the archive.

In parting, | want to mention a
few tidbits. First, you might think you
should do an approximation down the
edges as well, which is certainly possi-
ble. However, your error can build up
pretty quickly if you're not careful.
Also, Digital Image Warping by George
Wolberg (IEEE Computer Society,
1990) is a pretty good reference for this
sort of thing (including forward differ-
ences). Finally, I'd like to thank Chris
Green from Leaping Lizard Software
for opening my eyes up to the fact that
a, b, and c really are three totally arbi-
trary degrees of freedom. m

By the time you read this, Chris
Hecker will have quit working for the man
and will be out on his own, finally paying
for his own beverages. You can recommend
your favorite drink at checker@bix.com.

E]
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