
Attention:

This material is copyright  1995-1997 Chris Hecker. All rights
reserved.

You have permission to read this article for your own education. You
do not have permission to put it on your website (but you may link
to my main page, below), or to put it in a book, or hand it out to your
class or your company, etc. If you have any questions about using
this article, send me email. If you got this article from a web page
that was not mine, please let me know about it.

Thank you, and I hope you enjoy the article,

Chris Hecker
definition six, incorporated
checker@d6.com
http://www.d6.com/users/checker

PS. The email address at the end of the article is incorrect. Please
use checker@d6.com for any correspondence.

Perspective Texture
Mapping, Part II:
Rasterization

B E H I N D T H E S C R E E N

D
id I say I ’d be doing two
columns? Silly me—I meant
four or five columns. Our
topic, perspective texture
mapping, is so huge I don’t
know what I was thinking
when I said we could cover it
completely in two columns.

Luckily, the topic has enough variety
that it should keep everyone glued to
these pages for the duration.

In Part 1, we covered most of the
math behind the perspective projection
and triangle gradients (those neat num-
bers that let us interpolate without
recalculating at each scanline), and we
quickly went over polygon fill conven-
tions and stepping on pixel centers.
That’s a lot of information for a single
article. In fact, there’s so much material
still to cover I’m not even going to
summarize my last article beyond say-
ing, “Read it.” If you haven’t read Part
I, you’ll still get a lot out of Part II, but

you might have trouble seeing how this
information fits in perspective (cough).

This time around we’re going to
focus on the triangle rasterization stage,
and we’ll expand on the math for the
fill convention we derived last issue.

As I did last time, I encourage you
to get out a piece of graph paper and
join in the fun. Speaking for myself, I
find it impossible to learn math with-
out scribbling all over the place.

If you don’t like math, well, com-
puter graphics is math for the most
part, so I’m not sure what to tell you.
My goal is to describe the math in an
accessible way, but I’m not going to
hide the fact that math underlies every-
thing about computer graphics, espe-
cial ly three dimensional computer
graphics. If you like programming you
will definitely like math...heck, math’s
even better than computer program-
ming because there are no compiler or
operating system bugs! (Of course,
there’s no compiler or operating system
to tell you when you’ve done something
wrong, either.)

Raster Blaster
When I say rasterization, I mean taking
the continuous geometric triangle—
defined by its vertices—and displaying
it on the monitor’s discrete display grid,
or “raster.” The rule we defined for
doing this is called a top-left fill con-
vention, where we light all pixels that
are strictly inside the polygon bound-
aries and any pixels that are exactly on
the polygon boundary if they’re on the
top or left edges (remember, pixels are
boxes with a center, not just points).
Figure 1 shows this fill convention in

18 GAME DEVELOPER • JUNE/JULY 1995

Figure 1. The Fill Convention

109876543210

0

1

2

3

4

5

6

7

8

action. Pixel (5,2) is lit, but pixel (9,4)
is not, even though our polygon edge
intersects both (within the limits of the
magazine’s printing accuracy, at least).
This is because (5,2) is on a left edge
and (9,4) is on a right edge. A fill con-
vention lets abutting polygons share an
edge without either polygon overwrit-
ing any pixels of its neighbor, or leav-
ing any unlit holes—called dropouts—
between the two.

A top-left fill convention for a left
edge from x0,y0 to x1,y1 is defined
mathematically by the ceiling function:

In my last column, I presented this
equation without much explanation, so
this time we’ll go into it in more detail.
First, we can derive the equation for
the line in Figure 2 by setting the slope
of the entire line equal to the slope of
any line segment on that line (the seg-
ment from x,y to x0,y0 is on the line, so
its slope is equal to the line’s) and solv-
ing for x:

We can use Equation 2 to give us the x
value for any y value on the line. You
can see that if y = y0, then x = x0 as
you’d expect, and likewise for the other
endpoint. This equation generates real
(as opposed to integer) values for x, so
we need to use our fill convention to
tell us how the real x maps to an inte-
ger pixel. This is where the ceiling

function comes in.
The ceiling function is defined as

bumping a real value up to the next
highest integer if the value has a frac-
tional part, or leaving it alone if it is
already an integer. For example:

and:

Notice how the ceiling behaves with
negative numbers—it bumps the value
to the next highest value, not to the
next highest absolute value.

The ceiling is the perfect function
to realize a top-left fill convention for
left edges (and top edges if you solve
for y instead of x in Equation 2). If
we’re exactly on an integer pixel center
we will light the pixel, but if our x is at
all greater than the integer—to the left
of the pixel center—the ceiling will
bump us up to the next pixel that’s
strictly inside the edge. It should be
pretty obvious that the equations for
right and bottom edges are the same as
for top and left edges with the addition
of a minus one outside the ceiling.
That is, if the edge is on the integer
pixel, the ceiling won’t affect it, but the

-È ˘ = -4
3 1

-È ˘ = -4
4 1

5
2 3È ˘ =

3
4 1È ˘ =

4
4 1È ˘ =

y y
x x

y y
x x

x
x x
y y y y x

1 0

1 2

0

0

1 0

1 0
0 0

2

-
- = -

-

= -
-

Ê
Ë

ˆ
¯ - +

()

()

x
x x
y y

y y xint ()= -
-

Ê

Ë
Á

ˆ

¯
˜ - +

È

Í
Í
Í

˘

˙
˙
˙

1 0

1 0
0 0

Perspective texture

mapping is a huge

subject—much too

big to cover in one or

even two articles. In

Part II of his series on

the subject, Chris

Hecker tackles

rasterization, an

essential concept.

Chris Hecker

GAME DEVELOPER • JUNE/JULY 1995 19

minus one will knock us back one pixel
following our fill convention. If the
edge is greater than the pixel, the ceil-
ing will bump it up one (to the first
pixel outside the edge) and the minus
one will bump it right back inside the
polygon. Another way of looking at it
is if we have two polygons with an
abutting edge, the edge will be the left
edge of one and the right edge of the
other (or the top and the bottom), and
they’ll draw the same set of pixels,

except offset by a single pixel for one
polygon.

The code to implement this was
pretty straightforward in our floating
point rasterizer (shown in last month’s
listing):

int XStart = ceil(pLeft->X);

We call the ANSI standard
math.h function, ceil(), and use the
integer returned for our starting x coor-
dinate. As we step from one scanline to
the next our real x value steps by the
inverse slope, as Equation 2 shows
when you set y = y + 1.

While floating-point math cer-
tainly is convenient when you’re trying
to get code up and running, it’s proba-

bly not the best choice for a produc-
tion rasterizer. First, even though
floating point coprocessors are com-
monplace on today’s machines and are
even faster than the integer processor
for some operations, converting from
floating point to integer is still slow.
Because a rasterizer is where the real
three-dimensional coordinates get
mapped to the integer hardware
bitmap, we end up converting a lot.
Also, functions like ceil() are actual
function calls in floating point, but fall
out of the math almost for free with
integer coordinates.

In addition, it’s hard to get the
math just right for floating point num-
bers; there’s a whole field in mathemat-
ics dedicated to figuring out how float-
ing point numbers accumulate error.
Finally, we’ll see there are some bene-
fits to using integer digital differential
analyzers (DDAs) when we discuss
pixel centers.

Integers from
Floor to Ceiling
Before we convert our rasterizer to use
integers, let’s learn a couple of neat
tricks for manipulating the ceiling
function and its companion, the floor.
The floor of a value is—you guessed
it—the next-lowest integer if the value
has a fractional part, or the value if it’s
already an integer. You could also think
of this as truncating the fractional part
for positive values. Following are some
floor examples:

and

Again, notice the behavior when the

value is negative.
We can convert from ceiling to

floor easily if a and b are integers:

Equation 3 also shows that we can
move integers in and out of the floor
(or ceiling). We obviously can’t move
fractional values in and out, though,
because they can affect the result. Run
through a few examples on your own to
see why Equation 3 works.

Now that we have a working
knowledge of floors and ceilings, let’s
convert the rasterizer to use integer
coordinates. Because we are defining
x0,y0 and x1,y1 in Equation 1 to be
integers, we can manipulate the equa-
tion to our advantage. We can bring x0
outside the cei l ing function, for
starters. This means any x generated by
our fill convention will be the integer
x0 plus the integer result of the ceiling
function for a given y. Now, let’s use
Equation 3 to turn the ceiling function
into a floor.

Let:

and:

so:

If our initial y value is y0, it’s easy to see
the initial value in the floor is -1/dy.
The floor of this is -1, and -1 + 1 + x0 =
x0, as we expect. We’ll be doing for-
ward differences to step our edges, so
after we generate the initial value for x,
we’re going to want to step y by 1 to
the next scanline and generate the next
x from our previous x value, without
recalculating it from scratch. I will
assume you are already familiar with
forward differences, which are covered
in any decent computer graphics book,

x
dx y y

dy xint
()

()= - -Í
ÎÍ

˙
˚̇

+ +0
0

1
1 4

dy y y= -1 0

dx x x= -1 0

a
b

a
b

a
b

a b
b

È ˘ = -Î ˚ + =

- +Î ˚ = - +Î ˚

1 1

1 1 1
3()

-Î ˚ = -4
3 2

-Î ˚ = -4
4 1

5
2 2Î ˚ =

3
4 0Î ˚ =

4
4 1Î ˚ =

B E H I N D T H E S C R E E N

20 GAME DEVELOPER • JUNE/JULY 1995

Figure 2. A 2D Line

x0,y0

x1,y1

x,y

so I’m just going to point out the inter-
esting parts of this algorithm.

Perhaps the most interesting thing
about this particular equation is how the
floor interacts with the forward differ-
ences, especially when dx is less than 0.

Mod Squad
To thoroughly analyze Equation 4’s
behavior, we need another trick for
manipulating floors:

You’re probably familiar with the modu-
lus operator, mod, from programming in
C or other languages (in C, % is the
mod operator). As long as two numbers,
a and b, are positive, a mod b is the
integer remainder after dividing the
numerator a by the denominator b.
Equation 5a says we take the real num-
ber a/b and subtract its remainder over b
and to get the floored value, an integer.

The mathematically defined mod
usually behaves differently, in subtle
ways, than the mod in your program-
ming language of choice, and because
we’re using the “math-mod” in the defi-
nition of our fill convention we need to
make sure we don’t let an ill defined
programming language muck up the
works. For example, ANSI C (and
C++) defines the mod operator to be
the same as the math-mod operator
when both operands are positive, but
when either operand is negative the
result is implementation dependent—
the standard only defines the relation-
ship of a/b and a%b, not their values, in
this case. Fortunately our denominator,
dy, is always positive because we step
down the polygon from top to bottom,
so we only have to deal with the case
where the numerator, dx, is negative.

We saw how the floor function
behaved with negative values, so if
Equation 5a is true (it is, trust me), that
dictates how the math-mod behaves as
well. Assuming b is positive (our dy), a
little thought and some scratch paper
will show you that a mod b is always
positive regardless of whether a is posi-
tive or negative. This is because the

floor of a negative number goes to the
next lowest number, so the mod term
must be positive to bring it back up to
the real value of a/b. Figure 3 shows a
graph of x mod 3. Here’s Equation 5a
rearranged to make that more clear:

Equation 5b shows a fraction as we
sometimes think of it with an integer
part and a fractional part, since a mod b
is always smaller than b.

Even if we want to ignore the
ANSI standard and hope our platform
calculates mod correctly, we’re out of
luck on most machines, including Intel
x86 processors. The x86 signed divide
instruction, idiv, truncates towards 0
when dividing negative numerators,
which is exactly the opposite of the real
floor function. It appears we need to
develop a flooring divide and mod
function that works on any standard
platform, that is, any platform that
computes positive mods and divides
correctly.

If a ≥ 0, then we’ll just do the nor-
mal divide and mod. On the other
hand, if a < 0, let m = (-a) mod b:

In other words, Equations 6 and 7 say
that if m = 0 (there is no remainder),
then we do the flooring divide and mod
differently than if there is a remainder.
This probably seems really complicat-
ed, but if you sit down with a piece of
paper and refer to the equations and
Figure 3 you’ll see how this works in no
time (okay, maybe five or ten min-
utes...it took me a while, too). Our
C++ function to correctly compute
flooring divides and mods looks like
this:

inline void FloorDivMod(long Numerator,

long Denominator,

long &Floor, long &Mod) {

assert(Denominator > 0);

// we assume it’s positive

if(Numerator >= 0) {

// positive case, C is okay

Floor = Numerator / Denominator;

Mod = Numerator % Denominator;

} else {

// Numerator is negative,

a b
m

b a b m
mod

,

(() mod),
()=

=

- - π
Ï
Ì
Ó

0 0

0
7

a
b

a
b m

a
b m

Î ˚ =
- -Í

ÎÍ
˙
˚̇ =

- -Í
ÎÍ

˙
˚̇ - π

Ï

Ì
ÔÔ

Ó
Ô
Ô

()
,

()
,

()
0

1 0

6

a
b

a
b

a b
b= Î ˚ + mod (5b)

a
b

a
b

a b
bÎ ˚ = - mod (5a)

GAME DEVELOPER • JUNE/JULY 1995 21

Figure 3. x mod 3

x

x mod 3

do the right

thing

Floor = -((-Numerator) / Denomina-

tor);

Mod = (-Numerator) % Denominator;

if(Mod) {

// there is a remainder

Floor—; Mod = Denominator - Mod;

}

}

}

Why?
Let’s take a step back and ask ourselves
(as you’re probably already asking your-
self), “Why do we care?” People have
been rasterizing polygons since shortly
after the beginning of time, and they
never went through all this, you say.
Well, if their polygons don’t have
dropouts and consistently light the cor-
rect pixels, then they went through all
this or its equivalent for another fill
convention.

The vast majority of rasterizers
don’t work properly, and that’s why the
vast majority of games have dropouts
and overwrites at abutting polygon
edges. We’re taking the time up front
to get the math exactly right, so we can
implement our rasterizer with total
confidence that it will light exactly the
right pixels; no more, no less.

This is my personal crusade to
eliminate dropouts and poor quality
rasterizers everywhere, and I’m hoping
you’ll help me accomplish it. The best
part about doing it right is it looks bet-
ter and isn’t any slower at run time
than doing it incorrectly, there’s just
more to understand beforehand.

Vive La Différence
Now that we’ve got an algorithm for the
correct divide and mod on any platform,
we can go back to our original goal,
which was to implement our fill conven-
tion with integer forward differences.
We can use Equation 5b to manipulate
Equation 4. Let n = dx(y - y0) - 1:

and

(We can take the floor of n/dy out of
the enclosing floor because it’s an inte-
ger; see Equation 3.)

This is our initial state. We calcu-
late n from our starting y value, do the
flooring divide and mod (with our cor-
rect algorithm if n is negative), and use
the n mod dy term’s numerator as our
initial error term for our forward differ-
ence. (We don’t actually do the divide.
It’s implicit in the way the DDA func-
tions.) Since n mod dy is positive and
less than dy, we know that the floor of
the n mod dy term is 0 and doesn’t
affect the initial x. As y steps by 1, our
floor term steps by dx/dy (calculated by
substituting y = y + 1 in our original
equation). Our new x (call it x'), is cal-
culated from:

We use Equation 5b on the dx/dy step
to get:

Equation 8 says that as y steps by 1, x
steps by the floor of dx/dy, and our
error term steps by dx mod dy. Note
that mod is always positive, so when
our error term numerator exceeds our
denominator, dy, we add 1 to the
resulting x regardless if we’re stepping
left or right. This probably differs from
other DDAs you’ve used before—the
mathematically defined floor and mod
terms work out so that you’re always
adding 1 when your error term rolls
over, not just when you’re stepping in
the positive direction.

Look Before You Jump
Those of you who have written fixed-
point edge rasterizers instead of error-
term DDAs are probably wondering
why we’re going to the trouble of doing
a DDA, with its accompanying jumps

when the error term rolls over. Even
though the jump is in the scanline
loop, not the pixel loop, jumps are get-
ting more and more expensive as
processors get deeper and deeper
pipelines. In fact, on more recent Intel
architectures the jump prediction logic
makes mispredicted jumps that fall
through even more expensive than
jumps that are taken on earlier proces-
sors. Fear not, there is a good reason to
use an error-term DDA instead of
fixed-point to scan our edges.

Remember the following lines
from our floating-point texture mapper

¢ = + Í
ÎÍ

˙
˚̇

+

+Í
ÎÍ

˙
˚̇

x x dx
dy

n dy
dy

dx dy
dy

int int

mod mod
()8

¢ = + +Í
ÎÍ

˙
˚̇

x x
n dy

dy
dx
dyint int

mod

x n
dy

n dy
dy xint

mod= Í
ÎÍ

˙
˚̇

+ Í
ÎÍ

˙
˚̇

+ +1 0

x n
dy

n dy
dy xint

mod= Í
ÎÍ

˙
˚̇

+Í
ÎÍ

˙
˚̇

+ +1 0

B E H I N D T H E S C R E E N

22 GAME DEVELOPER • JUNE/JULY 1995

On recent Intel

architectures,

jump prediction

logic makes mis-

predicted jumps

that fall through

more expensive

than jumps on

earlier processors.

in Part 1:

int XStart = ceil(pLeft->X);

float XPrestep = XStart - pLeft->X;

float OneOverZ = pLeft->OneOverZ +

XPrestep * Gradients.dOneOverZdX;

When we start a scanline, we need
to step in to the first pixel center from
the real edge before we can start draw-
ing, and our interpolants (like 1/z in this
snippet) need to step with us. We had to
calculate XPrestep every scanline, and
multiply it by the gradients of all our
interpolants to get to the starting pixel
center before we could draw. This is
because we didn’t know how far we were
from the first pixel center until we did
the ceil() call.

Now think about how this works
with a DDA. We are stepping from one
pixel center to the next directly, and we
know exactly how far we had to come
from the last pixel center: the floor of
dx/dy in x plus 1 in y, or that step plus 1
in x when our error term rolls over (see
Equation 8). We never need to calculate
our prestep to a pixel center because
we’re always stepping on pixel centers!
Take a minute to think this through—it
means we get the advantages of sampling
from pixel centers, and we don’t pay the
prestep multiply. As I’ve mentioned
before, these advantages include rock
solid textures that don’t swim when you
rotate and no “hairy texture” artifacts.

Listing 1 shows the salient parts of
the integer rasterizer. Because of space
constraints, I’ve only included the dif-
ferences from last column’s listing. You
can pick up the entire listing on Com-
puServe in the Game Developer section
of the SD Forum or from
ftp://ftp.mfi.com/gdmag/src/.

The code is in a weird state because
I left the texture coordinates as floats,
while the edge rasterization is in integer
coordinates, as we’ve been discussing.
This bizarre combination doesn’t affect
the rasterizer, and it will be fixed in the
next article when we address the texture
mapping itself. One thing you may or
may not notice when you run this raster-
izer is how jerky it is compared to the
original floating point rasterizer. If you

24 GAME DEVELOPER • JUNE/JULY 1995

struct edge {
edge(gradients const &Gradients, POINT3D const *pVertices,

int Top, int Bottom);
inline int Step(void);

long X, XStep, Numerator, Denominator; // DDA info for x
long ErrorTerm;
int Y, Height; // current y and vertical count
float OneOverZ, OneOverZStep, OneOverZStepExtra;// 1/z and step
float UOverZ, UOverZStep, UOverZStepExtra; // u/z and step
float VOverZ, VOverZStep, VOverZStepExtra; // v/z and step

};

inline int edge::Step(void) {
X += XStep; Y++; Height—;
UOverZ += UOverZStep; VOverZ += VOverZStep;
OneOverZ += OneOverZStep;

ErrorTerm += Numerator;
if(ErrorTerm >= Denominator) {

X++;
ErrorTerm -= Denominator;
OneOverZ += OneOverZStepExtra;
UOverZ += UOverZStepExtra; VOverZ += VOverZStepExtra;

}
return Height;

}

void DrawScanLine(BITMAPINFO const *pDestInfo, BYTE *pDestBits,
gradients const &Gradients, edge *pLeft, edge *pRight,
BITMAPINFO const *pTextureInfo, BYTE *pTextureBits);

/******** TextureMapTriangle **********/

/********** handle floor divides and mods correctly ***********/

inline void FloorDivMod(long Numerator, long Denominator, long &Floor,
long &Mod)

{
assert(Denominator > 0); // we assume it’s positive
if(Numerator >= 0) {

// positive case, C is okay
Floor = Numerator / Denominator;
Mod = Numerator % Denominator;

} else {
// Numerator is negative, do the right thing
Floor = -((-Numerator) / Denominator);
Mod = (-Numerator) % Denominator;
if(Mod) {

// there is a remainder
Floor—; Mod = Denominator - Mod;

}
}

}

/********** edge constructor ***********/

edge::edge(gradients const &Gradients, POINT3D const *pVertices.
int Top, int Bottom)

{
Y = pVertices[Top].Y;
Height = pVertices[Bottom].Y - Y;
int Width = pVertices[Bottom].X - pVertices[Top].X;

if(Height) {
// this isn’t necessary because we always start at TopY,
// but if you want to start somewhere else you’d make
// Y your start
FloorDivMod(Width * (Y - pVertices[Top].Y) - 1,

Listing 1. The Integer Rasterizer (Continued on p. 26)

B E H I N D T H E S C R E E N

compile two test programs, one with each
rasterizer, and run them side by side,
you’ll easily see the quality difference.

The texture mapping is jerky
because we use the endpoints of the tri-
angle to compute the gradients, and the
endpoints are changing by relatively large
amounts as the triangle moves because of
the integer truncation. You also see simi-
lar jerkiness in a lot of game rasterizers,
and it’s probably caused by the same
thing (compounded with the artifacts
generated by not stepping on pixel cen-
ters). Even in the low 320 by 200 resolu-
tion game world, this jitter is visible sep-
arately from the normal aliasing. In
accordance with our quest to increase
rasterization quality around the world, I
find this unacceptable. The solution hap-
pens to be simple: fractional endpoints.
Unfortunately, I was out of space a while
back, and my editor is beginning to hate
me, so the description of this solution
will have to wait until next time.

Summing Up
Once again, I’m over my word budget,
and I still haven’t covered everything. I
simply must give credit where credit is
due, however—without my friend Kirk
Olynyk’s help and tutelage I’d still be
lighting the wrong pixels without know-
ing the difference. If you’re into this
kind of discrete math (it’s so useful for
raster graphics) and you want to learn
more, Concrete Mathematics (Addison
Wesley, 1994) by Ronald L. Graham
and Oren Patashnik is great.

Also, while discussing my article
“Changing the Rules for Transparent
Blts” (Under the Hood, Feb. 1995) on
rec.games.programmer, Rich Gorta-
towsky (rg@raster.kodak.com) mentioned
that for best results, your RLE compres-
sor should try to compress vertically as
well as horizontally. I totally agree.

Finally, I promise we’ll get back to
the actual texture mapping portion of
the texture mapper next time. ■

Chris Hecker wants a single-cycle
integer multiply on future x86 processors so
bad he can taste it. Yum yum. You can con-
tact him via e-mail at checker@bix.com or
through Game Developer magazine.

B E H I N D T H E S C R E E N

26 GAME DEVELOPER • JUNE/JULY 1995

Listing 1. The Integer Rasterizer (Continued from p. 24)

Height,X,ErrorTerm);
X += pVertices[Top].X + 1;

FloorDivMod(Width,Height,XStep,Numerator);
Denominator = Height;

OneOverZ = Gradients.aOneOverZ[Top];
OneOverZStep = XStep * Gradients.dOneOverZdX

+ Gradients.dOneOverZdY;
OneOverZStepExtra = Gradients.dOneOverZdX;

UOverZ = Gradients.aUOverZ[Top];
UOverZStep = XStep * Gradients.dUOverZdX

+ Gradients.dUOverZdY;
UOverZStepExtra = Gradients.dUOverZdX;

VOverZ = Gradients.aVOverZ[Top];
VOverZStep = XStep * Gradients.dVOverZdX

+ Gradients.dVOverZdY;
VOverZStepExtra = Gradients.dVOverZdX;

}
}

/********** DrawScanLine ************/

void DrawScanLine(BITMAPINFO const *pDestInfo, BYTE *pDestBits,
gradients const &Gradients, edge *pLeft, edge *pRight,
BITMAPINFO const *pTextureInfo, BYTE *pTextureBits)

{
// assume dest and texture are top-down
assert((pDestInfo->bmiHeader.biHeight < 0) &&

(pTextureInfo->bmiHeader.biHeight < 0));

int DestWidthBytes = (pDestInfo->bmiHeader.biWidth + 3) & ~3;
int TextureWidthBytes = (pTextureInfo->bmiHeader.biWidth + 3) & ~3;

int XStart = pLeft->X;
int Width = pRight->X - XStart;

pDestBits += pLeft->Y * DestWidthBytes + XStart;

float OneOverZ = pLeft->OneOverZ;
float UOverZ = pLeft->UOverZ;
float VOverZ = pLeft->VOverZ;

while(Width— > 0) {
float Z = 1/OneOverZ;
int U = UOverZ * Z;
int V = VOverZ * Z;

*(pDestBits++) = *(pTextureBits + U + (V * TextureWidthBytes));

OneOverZ += Gradients.dOneOverZdX;
UOverZ += Gradients.dUOverZdX;
VOverZ += Gradients.dVOverZdX;

}
}

Please use checker@d6.com.

