Attention:;

This material is copyright [1 1995-1997 Chris Hecker. All rights
reserved.

Y ou have permission to read this article for your own education. You
do not have permission to put it on your website (but you may link
to my main page, below), or to put it in abook, or hand it out to your
class or your company, etc. If you have any questions about using
thisarticle, send me email. If you got this article from aweb page
that was not mine, please let me know about it.

Thank you, and | hope you enjoy the article,

Chris Hecker

definition six, incorporated
checker@d6.com
http://www.d6.com/users/checker

PS. The email address a the end of the articleisincorrect. Please
use checker@d6.com for any correspondence.

Physics, Part 4:

The Third Dimension

magazine — | might even write an arti-
cle during the hiatus — but this is the
last official Behind the Screen for at
least a year. | love writing this column,
so you can be sure I’'ll be back as soon
as possible. In the meantime, remember
that one of the reasons | write these
articles is to encourage information
sharing among game developers — if
you have an idea for an article you’d
like to write, don’t hesitate to propose it
to the editor. The more information we
share, the faster our industry advances,
and that’s good for everybody.

As my swan song, I’'m giving you this
monster of an article to finish up the
physics series. Twice the length! Twice
the number of equations! Twice as late
turning it in to my editor! Off we go!

Prelude

ersonally, | think 2D physics is

Preally cool. Still, you'll never forget
the first time you see a physically simu-
lated 3D object careen off a wall —
especially when you wrote the simula-
tor yourself. Also, for better or for
worse, most of the games coming out
these days are 3D. Unless you're writ-
ing the world’s most realistic side-
scroller, you’re going to need the 3D
equivalents of the first three colunms
in this series. This installment is huge
because I’'m going to cram all three
into a single column. To do this, I'm
going to have to assume you know the
material from the first three columns,
so you might want to go back and read
them again before going any farther.

Like the previous articles, this one is
divided into a section on kinematics
and a section on dynamics. The kine-

http://www.gdmag.com

matics will tell us how to represent the
3D object’s configuration and its deriv-
atives, and the dynamics will tell us
how to relate these kinematic quanti-
ties to each other and to external forces
and torques. For the most part, the
transition from 2D to 3D is intuitive,
but as you’ll see, the lack of a good
parameterization for 3D orientation
mucks up the works a bit. But I’'m get-
ting ahead of myself....

t pains me to say it, but this is going to be my last column for a while. Writing
these columns takes a lot of time, and right now | need to devote all my waking
hours to my startup game company and to shipping our first game. Still, I'm

going to stay on as Game Developer’s Editor-at-Large, so | will have input on the

In order to answer this question and
keep this article only two times larger
than normal, I’'m now forced to skip a
ton of math. Rotation in 3D is an
incredibly rich subject with deep ties to
almost every field in mathematics. The
classical mechanics text by Goldstein in
the references on my web site (the
URL’s at the end of the article) has a 50-
page chapter on 3D orientation, and
yet there are still plenty of places in the

A swan song if you will, a desperate dash for
closure if you won’t. The physics series
comes to a roaring conclusion by applying all
you’ve learned so far to the deep dimension.

3D Kinematics

irst, the easy part. The equations for
3D linear kinematics (position,

velocity, and acceleration) are exactly
the same as for their 2D counterparts.
The two-element vectors turn into
three-element vectors, and you’re done.

Unfortunately, it’s not so easy when
we take 3D orientation into account.
Consider the wonderfully elegant rep-
resentation of an orientation in 2D: a
scalar. It’s hard to get simpler than this
and still represent some useful infor-
mation. As we’ve seen, the orientation
value Q, its time derivative w, and its
second derivative a are all scalars that
nicely parameterize any orientation
and change of orientation in two
dimensions. However, a single scalar
clearly isn’t going to cut it for 3D ori-
entation. But what representation will?

chapter where Goldstein has to rein
himself in to stay on course. Given the
impossibility of covering orientations
even superficially, we need to be con-
tent to spend only the next paragraph
rationalizing our choice of representa-
tion, and then move on to describe our
representation’s properties.

There are three angular degrees of
freedom in 3D (the three linear and
three angular degrees of freedom add
up to the oft-heard “6DOF”), so we
need to use at least three scalars to
describe an arbitrary orientation. At
this point, math deals us a temporary
setback. It’s possible to prove that no
three-scalar parameterization of 3D ori-
entation exists that doesn’t suck, for
some suitably mathematically rigorous
definition of “suck.” | haven’t done
this proof (I think it uses some pretty
high-end group theory, which |
haven’t learned yet), so | can’t tell you

JUNE 1997 GAME DEVELOPER

FIGURE 1. Axis-angle rotation.

exactly how it works, but | believe the
gist of the proof is that no minimal
parameterization exists that doesn’t
contain singularities. These singulari-
ties can take different forms — depend-
ing on how you allocate the three
degrees of freedom — but according to
the math, it’s impossible to get rid of
them. Anyone who’s played around
with the most common minimal para-
meterization of 3D, the set of three
Euler angles (roll, pitch, and yaw are
one possible set), has probably run into
some of these singularities. Luckily, we
aren’t forced to use only three parame-
ters. We can avoid the singularities by
using more parameters, as long as we
constrain our multiple parameters
down to three degrees of freedom. This
is exactly what we’re going to do by
chosing 3x3 matrices to represent our
orientations.

Even though I said we’d only use one
paragraph to rationalize our orienta-
tion parameterization, I’'m going to
cheat a bit and spend another para-
graph describing what | mean by “con-
strain those parameters down.” As a
relatively intuitive example, let’s say
we want to represent a 2D position.
The obvious way to do this is to use a
2D vector and be done with it. If we
were feeling particularly nonoptimal —
or if there was some problem with
using 2D vectors — we could use a 3D
vector to represent 2D position, as long
as the tip of that vector was con-
strained to move in a plane. We could
implement this constraint with a single
dot product equation. If the dot prod-
uct of our variable 3D position vector
with another constant vector was

GAME DEVELOPER JUNE 1997

always constrained to be a constant
value, then the tip of the 3D vector
must always move in a plane. This 3D
vector minus the single scalar con-
straint leaves us with only two degrees
of freedom to move in the plane — this
is the same as using a 2D vector in the
first place. As a rule, the original num-
ber of unconstrained degrees of free-
dom minus the number of scalar con-
straint equations leaves us with our
final number of degrees of freedom.
This concept of degrees of freedom and
constraint equations becomes incredi-
bly important as you learn more about
dynamics (and about math in general).
Mull this over for a while until you're
comfortable with the idea.

Now, as | was saying, we’re going to
use 3x3 matrices to represent the orien-
tations of our rigid body. Clearly, an
arbitrary 3x3 matrix has nine degrees
of freedom (one for each scalar in the
matrix), so we’re going to need some
constraints to get down to the three
degrees of freedom needed to represent
a 3D orientation®. We get these con-
straints by restricting our matrices to
be special orthogonal. The “special” part
means the matrix is not a reflection —
it can’t turn a right-handed coordinate
system into a left-handed one. The
“orthogonal” part comes from the fol-
lowing matrix equation:

AAT =1 (Eq. 1)

In English, A times its transpose, AT,
yields the identity matrix, or put anoth-
er way, AT = Al — transpose is the
inverse. Eq. 1 also implies ATA=1. The
theory of orthogonal matrices is at least
as large as that of 3D orientations, so
again I’'m only going to touch on the
highlights that directly affect us. Eq. 1
gives us our six constraint equations
because it’s a bunch of dot products of
the rows of A. Three constraints come
from the 1s on the diagonal of the iden-
tity matrix, meaning the rows are unit
length. The other three constraints are
from the Os, meaning the rows are all at
right angles to each other. Those con-
straints bring us down to exactly three
degrees of freedom in A. Most people
are aware that 3D rotations are orthogo-
nal and obey Eq. 1, but it’s also possible
to prove the converse: that any special

I ots of people use objects called quaternions to
represent orientations. Quaternions have four
parameters and need one constraint. Usually the
quaternion is constrained to be unit length.

orthogonal 3x3 matrix is a rotation. As
long as we enforce the six constraints of
Eq. 1, we have a valid rotation. As a side
note, those of you who have used 3x3
matrices to represent orientations have
probably run into problems when the
orthogonality constraints were not
enforced in the face of numerical inac-
curacy. In this case, your “rotation
matrix” probably started scaling and
shearing your objects instead of just
rotating them.

We’'re still in mathematical fast-for-
ward mode, so I'll just point out that a
special orthogonal matrix operates on
(or rotates) a vector through plain old
matrix multiplication. This is one rea-
son a 3x3 matrix is a more convenient
orientation representation than a set of
Euler angles — Euler angles require eval-
uating trig functions to rotate a vector.
Also, the matrix product of two special
orthogonal matrices is the cumulative
rotation (applying the product BA to a
column vector is the same as applying A
and then B), which means the product
must be another special orthogonal
matrix. Finally, matrix multiplication is
not commutative (BA is different than
AB). This mirrors the noncommutativi-
ty of rotations; it’s easy to construct a
sequence of rotations that, when per-
formed in a different order, result in a
different final orientation.

| want to take a step back at this
point and explain why I’'m being
slightly strange in my discussion of
rotation matrices. Don’t | understand
that everyone knows that a matrix can
rotate a vector, and that matrix con-
catenation works? Sure, and in fact I'm
counting on you knowing this since |
don’t have room to explain that stuff
in this column. However, I’'ve found
most computer graphics-oriented text-
books only explain how to construct
rotation matrices (“put the sines and
cosines in these places”), but they
don’t talk about many of the formal
properties of rotation matrices. In
dynamics, after giving our objects their
initial orientations, we never again
construct rotation matrices from
scratch. Our orientations evolve as a
result of the integration we perform on
the dynamic system — knowing how
to create a rotation around the z-axis
doesn’t help us much. Another impor-
tant point is that the 3x3 matrix is the
orientation. In graphics, we learn to
use matrices to cause rotations, but in

http://www.gdmag.com

this column, the matrix simply is the
orientation representation (in addition
to having the nice property that it
causes the rotation when multiplied
with a vector).We’re not, for example,
using Euler angles and converting
them to matrices in order to operate on
vectors with them; we’re storing the
matrix as our only representation of
our objects’s orientation. So, if some-
one asks for object A’s orientation, we
hand him or her the whole 3x3 matrix,
with assurances the matrix is special
orthogonal so it really does represent
an orientation. If we don’t make sure
it’s special orthogonal, our orientation
representation won’t work properly.
While we gain simplicity over Euler
angles, we give back some of that gain
because we’re required to enforce the
constraints on our matrices. | wish |
could spend more time going into the
subtleties of 3D orientation, but | can’t,
so you’ll have to discover them for
yourself from the references. Anyway,
bear with me: Take your current knowl-
edge of matrices, add it to anything
new you learn here, and realize that
we're talking about the same matrices
in the end — now you just see them
from a different side.

To warm up for the equation manipu-
lation to come, let’s prove a fundamen-
tal result for orthogonal matrices. We’'ll
use this result later. Start with a rotation
matrix A that transforms any vector r to
r' by r' = Ar. Now, say we want to be
able to apply a (possibly nonrotation)
matrix B’ to r' that will have the same
effect as a matrix B that’s applied to r
before A rotates it. Symbolically, we
want to figure out B' in B'Ar = ABr.
Thinking about it another way, how do
we “rotate” the matrix B by A so it will
work in the primed space? We begin by
noting that r = 1r. | can therefore insert
the identity matrix into the right-hand
side of the previous equation, giving us
ABL1r (inserting an identity matrix is a
common linear algebra trick). The
equality ATA =1 from Eq. 1 also gives us
B'Ar = ABATAr. Comparing the two
terms gives the following equation:

B’ = ABAT (Eq. 2)

Eq. 2 defines what is called in linear
algebra a “similarity transform.” It
shows how to rotate B to get a matrix
in the primed space that operates on
primed vectors in the same way B oper-
ates on vectors in the unprimed space.

http://www.gdmag.com

Neat trick, huh? You could use Eq. 2 to
find a matrix that will rotate an object
around its local x-axis in world space:
Create a B that’s an x-axis rotation,
then use A, the local-to-world transfor-
mation, to similarity-transform B
(although in this case, it’s probably eas-
ier just to rotate the object around the
local x-axis when it’s in local space
before applying A, but if you didn’t
have the original r you’d need Eq.
2...hey, it’s just an example).

Axis and Angle

We’ve decided on our kinematic
representation for orientation,
but we still need to pick representa-
tions for the kinematic derivatives:
angular velocity and angular accelera-
tion. To do that, we need to explore
our orientation representation in a lit-
tle more detail. I'll give you one more
unproven fact, then we’ll slow down
and derive some results ourselves.

The fact is that any rotation (and this
includes all combinations of rotations)
can be described by a single unit vector
and a rotation angle around that vector.
This means you can concatenate any
convoluted sequence of rotations you
like, and if you simply tell me the start
and the end orientations, | can give you
back a unit vector and a scalar encapsu-
lating the change in orientation. The
scalar tells how far to rotate around the
vector. This rotation will take you from
your start to your end orientation in
one step. (Note how many degrees of
freedom we’re talking about here: three
for the elements of the vector, plus one
for the angle, minus one for the vector’s
unit-length constraint leaves us with —
surprise — three.)

We can also directly construct a rota-
tion equation from the unit vector and
the angle. Let’s start with a unit vector
n, an angle 6 around that vector, and
the arbitrary vector to rotate r. Figure 1
shows the situation, with r' as the
resultant vector. If we look down -n
onto the plane of rotation containing
the tips of r and r’, we see the circle of
rotation in Figure 2. As we know from
trigonometry, if we consider the tip of
r to be on the x-axis of this diagram,
then the coordinates of the tip of r’,
measured in this planar coordinate sys-
tem, will be (x = rcos6, y = rsinB), where
r is the radius of the circle. This (x,y)
coordinate notation is just a shorthand

way of saying the vector sum

0 + rcosex + rsinBy or, “start at the ori-
gin o, go rcos6 units down the x vector,
and then rsinB units down the y vec-
tor.” So, all we need to do is to form
the vectors 0, X, and y in the 3D space,
then apply the 2D rotation formula to
them.

First, we define the origin. The origin
is the vector parallel to n with its tip
on the plane of rotation. We can form
this vector by projecting r onto n with
a dot product, then moving the result-
ing distance down n.

(Eq. 3)

Eq. 3 uses the “matrix notation” for
the dot product. If we transpose the
column vector n, we get a row vector.
A row vector times a column vector r is
equivalent to a dot product and results
in a scalar (for matrices, 1xn * nx1 = 1x1).
The o vector moves us to the plane of
rotation. We can trivially define the x
vector as the difference between the tip
of r and the o vector.

(Eg. 4)

Note that we aren’t normalizing x
because its length is exactly what we
want: the radius of the rotation circle r.
Finally, we form the y vector using a
cross product of nand r.

(Eq. 5)

The cross product forms a 'y that is
perpendicular to both n and r, and
hence X, since x is a linear combina-
tion of the two. The y vector is also the
perfect length, since the magnitude of
the cross product is equal to |r|sing (n
is unit length), which conveniently

FIGURE 2. The circle of rotation.

o=n"rn

X=r-n'rn

y:an‘

JUNE 1997

GAME DEVELOPER

equals r, the radius of the circle, as you
can see in Figure 1. Putting it all
together, we get

r=n'rn+ cose(r - nTrn) +sin®(nxr)
(Edg. 6)
This is one form of a famous formula
on whose name no one seems to agree.
I’'ve heard it called The Rotation Formula,
Rodriguez’s Formula, and a bunch of
other names. No matter; we’ll call it Eq.
6. Eqg. 6 will rotate any r around n by 6.
We’re not actually going to use Eq. 6 to
rotate vectors, although it would do the
job just fine. Instead, we’re going to use
it to prove useful kinematics equations
for 3D orientation. We could also con-
struct a rotation matrix from Eq. 6 by
“pulling out” the r vector from the
right-hand side, but we’re running out
of space, so | highly recommend
exploring that yourself. (Hint: Try to
figure out the 3x3 matrix associated
with each term, so that the matrix
times r would equal the terms in Eq. 6.
You'll need the “tilde operator,” which
I’ll discuss later.)

Angular Velocity

I n 2D, we used the time derivative of
our orientation scalar as our angular
velocity scalar. The angular velocity
scalar, when combined with the per-
pendicular operator, was also useful for
finding the velocity of any pointin a
rotating body. In 3D, our orientation is
a 3x3 matrix. Is our 3D angular velocity
required to be the time derivative of
our orientation matrix? The answer is
no, the angular velocity representation
doesn’t have to be the time derivative
of the orientation representation. It’s
only important that we’re able to cal-
culate the orientation matrix’s deriva-
tive so we can integrate it — we don’t
have to use the derivative beyond that.
We’ll see how to make the needed cal-
culation later.

It may seem strange that we can use
a fundamentally different representa-
tion for our angular velocity than we
used for our orientation. Unfortun-
ately, we don’t have the space to go
into why this is possible, but it’s cov-
ered in most of the references on my
web site. Let’s work through a few
derivations to define and get comfort-
able with the angular velocity.

First, we’ll calculate the linear veloci-

ty of the vector r in Figure 1. If we

GAME DEVELOPER JUNE 1997

assume r is rotating over time around a
fixed n, then we can again reduce the
problem to the planar Figure 2, and use
similar arguments for the velocity of r
as we did in my article on 2D angular
velocity. The first argument from the
2D article showed the magnitude of
the velocity vector as r 6, which we’ll
recognize as |r|sing® from Figure 1.
Next, we can see the velocity vector
must point perpendicularly to r and to
n. This is true because r is only rotating
about n, so the tip of r is always mov-
ing normal to the plane containing r
and n as it rotates. So, what'’s a vector
expression that yields a vector of the
right magnitude pointing in the right
direction? How about this:

r=enxr=wxr (Eq. 7)

If we define the angular velocity vec-
tor w as the current instantaneous axis
of rotation times the rotation speed
(8n), then we get an expression that is
very similar to the one for 2D, only
with a cross product replacing the per-
pendicular operator — | told you the
two operators were related. Remember,
like the 2D version, Eq. 7 is only valid
if r is a constant vector — it can rotate

around, but it can’t change length andc = r

keep Eq. 7 valid.

Here’s a totally different way to
derive the same result: We can consider
Eq. 6 as a function that describes the
path of the vector r' as it rotates by 0
radians from its initial position r. If 0 is
a function of time, and n is a constant
axis of rotation, we can differentiate
Eqg. 6 with respect to time.

r'=-sin Bé(r - nTrn) +cos66(n xr)
(Ea. 8)

We consider r in Eg. 6 to be constant
as well, since it’s just the initial posi-
tion of the nonconstant vector r'.

Finally, evaluate Eq. 8 at some time t.
We can always define 6(t) to be 0 in
Figure 2 by choosing an appropriate
frame of reference. Specifically, we
make the “x-axis” of the figure be the
plane containing r and n at any given
instant. Within this frame of reference,
r'=r,sin0 =0, cosO = 1, and we’re left
with Eqg. 7! Remember, just because
6(t) = 0 in our frame of reference, it
doesn’t mean 6(t) = 0.

This vector wis the representation
we’ll use for our angular velocity. The
vector we’ve defined is “instantaneous”
in the sense that it’s a valid representa-

tion of the angular velocity at a given
instant, but not before or after that
instant. The instantaneous axis of rota-
tion can and will change under the
application of forces and torques. This
means we can use it to calculate veloci-
ties of points at the instant it’s valid,
but we can’t store it and use it later
without keeping it up-to-date via inte-
gration. More on that later.

As a final derivation, we’ll use Eq. 7
to calculate the derivative of the cur-
rent orientation matrix using the angu-
lar velocity vector. This is a bit tricky,
so hold on tight. First, we know from
graphics that the columns of a rotation
matrix are unit vectors in the trans-
form’s destination coordinate system.
Well, Eq. 7 shows the angular velocity
vector “differentiating” a column vec-
tor, and there’s no reason we can’t use
the angular velocity to differentiate
each column vector of the orientation
matrix, resulting in the differentiated
matrix. The only problem is that the
cross product of a vector and a matrix
isn’t usually defined. However, we can
represent a cross product as a matrix
times a column vector, like this:

0 -w; Wy
-.—nTrQ ~
r=wWxr=wr=|w; 0 —uyr,
—W, Wy 0 (rs
(Eq. 9)

The tilde operator, introduced in the
third term, takes a vector and creates
the “skew-symmetric” matrix depicted
in the final term. If you write out the
matrix multiply by hand, you'll see it’s
equivalent to the cross product. We use
the tilde operator to differentiate each
column with a single matrix multiply.
(Eg. 10)

A=rA

The right side of Eq. 10 will differen-
tiate each column of A, which differen-
tiates the whole matrix. We could have
defined a vector cross a matrix as the
column-wise cross product, or we could
have just looped through the columns
doing cross products individually. But
then you would have missed out on
the groovy new tilde operator in Eq. 9,
so it was worth it. Plus, we’ll use this
operator again later.

It’s important to stress a couple
things about Eq. 10. First, the left-
hand side is the instantaneous deriva-
tive of A, meaning it’s only the deriva-
tive at the instant of time when w is
valid. However, that’s all we need to

http://www.gdmag.com

FIGURE 3. A pointon arigid body.

numerically integrate A forward to the
next step, as we’ll see. Second, the axis
of the angular velocity vector and the
axis of the rotation matrix can be dif-
ferent, and Eq. 10 still holds. In other
words, if we have our current orienta-
tion A, and our body has some angu-
lar velocity, embodied in w, then Eq.
10 will calculate how the orientation
of A is changing at that instant under
the influence of the angular velocity.
This is how our body’s orientation
changes in the simulator — we relate
the forces and torques to changes in
w, and use w with Eq. 10 to integrate
our body’s orientation.

Kinematic Equations for a Point on a
Moving Body

et’s use all the kinematics that

we’ve developed so far to write the
equations for a point’s position and its
derivatives. The position vector of the
point b is given by the position vector
of the origin of the body o plus the
vector from o to b in the body, which
we’ll call r. Figure 3 shows this configu-
ration. The vector r rotates with the
body as shown in the figure. Since the
body is rotating, r is the rotated world-
space version of a vector we’ll call r
that’s constant in the body space. Now
we can write the position equation for
b in world space.

b=o0+Ar=o+r (Eq. 11)

If we differentiate Eq. 11, we’ll get
the velocity of b. The o vector is easy,
since it’s just translating around,
keeping track of the origin — its
derivative is just 0, or the velocity of

http://www.gdmag.com

the body’s origin. There are
two equivalent ways of dif-
ferentiating the rotating r
vector, though. First, we’ll
use Eq. 7 and differentiate
the last term in Eq. 11
directly.

b=o+wxr (Eg. 12)

Next, for a change of pace,
we’ll differentiate the middle
term in Eq. 11 explicitly,
using the product rule for
derivatives.

b=0+AF+AF
Since T is a constant vector
in the body, its time deriva-

tive is 0. We can also substitute Eq. 10
into this equation and we get

b=0+®MAT=0+Wr=0+wXr

In other words, both ways of finding
b’s velocity are equivalent — score one
point for math. We differentiate one
more time to find b’s acceleration. (I'm
only going to do it one way this time.
You should try the other yourself.)

b=o+wxr+wxr
b=o+axr+wx(w+r) (Eq.13)

We should have expected the deriva-
tive of the angular velocity vector, the
angular acceleration vector a, to show
up, but what'’s the third term doing
there? The math has magically pro-
duced the centripetal acceleration of a
rotating point! In other words, if you
look at the direction in which the third
term is pointing, you’ll see it’s pointing
back towards the origin of the body.
This is the acceleration you feel if
you’re stuck to the wall of one of those
spinning carnival rides. You actually
feel it as a force pushing you into the
wall, but that’s only because the wall is
accelerating towards the center to keep
from being flung across the fair-
grounds. (Mathematically, this is the
restriction that r is constant in body-
space.) | just love dynamics.

Interlude

hat you just read was longer

than any of my other columns,
and we haven’t even covered 3D
dynamics yet. We have come a long
way, though. We’ve chosen representa-
tions for the position, linear velocity,
and linear acceleration, and also for

the angular quantities of orientation,
angular velocity, and angular accelera-
tion (I slyly stuck this one into Eqg. 13
as a, the derivative of w). We’ve also
shown how to use w to differentiate
vectors and matrices, and we calculated
the velocity and the acceleration of any
point on a moving body.

The only things left to do before we
have a full 3D dynamic simulation
algorithm are to develop the 3D
dynamic quantities and equations,
relate those dynamic quantities to the
kinematic quantities, and show how to
integrate them all forward in time.

3D Dynamics

ike 3D linear kinematics, 3D linear

dynamics and 2D linear dynamics
are identical, with the exception that
the vectors now have a z element. In
the 2D articles, we derived equations
for the force and momentum of a sin-
gle particle, then derived the position
vector to the center of mass. Since the
derivations are identical in 3D, I'll just
state the results without proof. (Note
that I’'m switching from the super-
scripted indices that | used in the 2D
columns to subscripted indices here so
I don’t confuse “total” values with the
transpose operator. Sorry about that.)

Fr = Zpu = zmivi = zmiai = Macy,
I | I (Eq. 14)

Eq. 14 says the total force F; equals
the sum of all the momentum deriva-
tives, which is equivalent to the mass of
the whole body M times the accelera-
tion of the center of mass a,,. If I know
all the forces on the body, | take their
vector sum and divide by the total mass
to find the acceleration of the center of
mass. | then can integrate the accelera-
tion forward in time to find the new
center of mass velocity and position.

The 3D angular dynamic quantities
are, as you might expect, slightly differ-
ent than the 2D angular dynamic quan-
tities. First, we’ll define the angular
momentum of point B about point A in
three dimensions. In 2D, the angular
momentum was a scalar formed by a
perp-dot product. We visualized this
quantity capturing the amount of B’s
linear momentum “rotating around” A.
Well, in 3D we need an axis to rotate
around, so the angular momentum
becomes a vector L. L is calculated with

JUNE 1997 GAME DEVELOPER

a cross product, which conveniently
creates a vector perpendicular to both
the linear momentum of B, p,, and the
vector from A to B, r,. In other words,
the cross product creates a vector that
describes the plane of the momentum’s
rotation around A. The magnitude of L
is proportional to the sine of the angle
between the two vectors and measures
the amount of momentum that’s per-
pendicular tor.

Las = Tas XPs (Eg. 15)

As in two dimensions, the derivative
of the angular momentum is the
torque, denoted by 1. A little bit of work
will show the following identities hold:

(Eq. 16)

Lag = Tas = Fag XF3

The derivative of the angular
momentum is the torque, and it can be
calculated from the cross product of
the vector from the point of measure-
ment to the point where the force is
being applied. The torque measures the
amount of “rotating-around” force
experienced from a given point.

The next thing we need to do is devel-
op the “total” versions of these quanti-
ties. That is, what is the angular momen-
tum for the entire body? As in 2D, the
total angular momentum is just the sum
of all the angular momentums of all the
points in the body measured from a
point (usually the center of mass).

Lar = z Fp XMV, = z Fpi X Ty

I've taken the liberty of rewriting
the momentum of the point being
measured as its mass times its velocity
— I even went a step farther in writing
it as the position vector’s time deriva-
tive. This is the first step in linking
the angular dynamic quantities with
the angular kinematic quantities. The
next step is to substitute Eq. 7 into the
equation, leaving us with

Lar = Z M;iFy; % (wx rAi)
= Z —miry; X (rAi X‘*))
1

| flipped the order of the inner cross
product, which causes the result to

change sign. Finally, we use the all-pow-
erful tilde operator from Eq. 9 to turn
the equation into a matrix multiply:
Both r cross products are replaced with
T, leaving w on the right-hand side.

Lar = z -mifyw=1,w (Eq.17)
]

The inertia finally rears its head in
3D, though it’s now a matrix rather
than a scalar! Since w is constant over
the whole body, as in 2D, we can pull
it outside the summation. This leaves
us with a matrix called the “inertia ten-
sor,” relating the angular velocity of a
body to the angular momentum of the
body. The inertia tensor obviously is a
lot more complicated than the single
scalar moment of inertia from 2D. To
make matters worse, the inertia tensor
changes as the object rotates because it
depends on the world-space rs.

If we ignore the change in the inertia
tensor for a moment, we can actually
begin to see how we might implement
3D angular dynamics. We can easily
find the total torque on the body —

measured about the center of mass —
by forming the vector sum of all the
individual torques produced by force
applications via Eq. 16. If we integrate
this torque, we’ll get the total angular
momentum about the center of mass.
Then, assuming we know the world-
space inertia tensor, we can solve the
inverse of Eqg. 17 to find the current
angular velocity for the body.

(Eq. 18)

Once we've got the angular velocity,
we’re home free, kinematically speak-
ing, since we already know how to
integrate the orientation using the
angular velocity to get the orientation’s
derivative. The only thing standing in
our way is the inertia tensor.

— 11
w= ICMLCM

The Inertia Tensor

When we did the derivations lead-
ing to the definition of the iner-
tia tensor in Eq. 17, we were using

world-space vectors and matrices. This is
why the inertia tensor is giving us fits —

it changes as the object rotates in world
space because it depends on the world-
space r vectors. However, it’s possible to
do the derivations in body space. You
end up with an inertia tensor based on
the fixed body-space r vectors.

Th= z A (Eg. 19)

TheI body-space inertia tensor does-
n’t change (since the body is rigid), so
we can compute it once at the begin-
ning of our simulation and store it. We
use the similarity transform trick we
derived oh-so-long-ago in Eq. 2 to gen-
erate the world-space inertia tensor for
the current orientation A. More inter-
esting, perhaps, is the fact that since
the body-space inertia tensor is con-
stant, we can precalculate its inverse
before we start. Then we similarity-
transform the inverse inertia tensor,
and avoid the inversion during the
simulation when evaluating Eqg. 18 to
find the angular velocity vector.

I = ALAT (Eq. 20)

The only piece still missing is a way

to calculate the body-space inertia ten-
sor in the first place. For continuous
bodies, the summation in Eq. 19 turns
into an integral over the body’s vol-
ume, and for arbitrarily oddly shaped
bodies, this integral can get arbitrarily
complicated. It’s fairly easy to analyti-
cally solve the integral for “easy geom-
etry,” such as boxes, ellipsoids, cylin-
ders, and the like, and there are tables
for other objects. Also, a paper refer-
enced on my web site shows how to
calculate the inertia tensor for an arbi-
trary polyhedron, but the algorithm is
way too complicated to go into here. |
should also note that if you can’t calcu-
late the exact inertia tensor, you can
still use the inertia tensor for a tight-fit-
ting approximation volume and the
dynamics will be “mostly right.”

3D Dynamics Algorithm

We now have the quantities and
equations we need to imple-
ment 3D rigid body dynamics, and I've
outlined the simulation algorithm in

Initialization:
Determine body constants:

0t _ AO07-1 p0T
low = A lIgyA

0 _ 0o
W = lgyley

Simulation:

Integrate quantities:
n+l _ .n n
rCM - I’CM * hVCM

Vn+1 = Vn + hF_‘F
Cc™M Cc™M
M
An+1 = A"+ h(’;)nAn
n+l _n n
LCM 4 LCM + hTT

Reorthogonalize A"

Compute auxiliary quantities:
n+1 _ An+l7-1 pn+tT
Iy =A"IguA

n+l _ n+l7lpn+l
" =1" Ly

N\

-1
lew .M
Determine initial conditions: rQ,,Vey,A% LY,

Compute initial auxiliary quantities:

Compute individual forces and application points: F,r;

Compute total forces and torques: F = Z F.17 = z r,xF

J

Listing 1. This listing focuses on the
parts of the overall simulation loop
that changed during the move to three
dimensions, so it doesn’t cover how
collision detection and resolution fit
into the picture. See the algorithm in
the February/March 1997 “Behind the
Screen” for the full loop (or look in the
sample code). Let’s step through
Listing 1.

At initialization time, we need to
determine the mass constants for the
body. These can be calculated on the
fly from the geometry of the object,
or loaded in from a file, or even
typed in by the user. We also need
the initial conditions for the object.
I’ve indicated the “step number”
with a superscript, so the initial con-
ditions are all step 0. For the linear
quantities, we store the position vec-
tor of the center of mass, and its
velocity. For the angular quantities,
we store the orientation matrix and
the angular momentum vector.
Before | explain why we store the

GAME DEVELOPER JUNE 1997

angular momentum, let’s look at the
next line in the initialization, Compute
initial auxiliary quantities. The auxil-
iary quantities are those we derive
from the other quantities — we don’t
integrate them directly. We first com-
pute the initial world-space inverse
inertia tensor by similarity-trans-
forming the body-space tensor using
the initial orientation matrix (Eq.
20). Then we use this world-space
inverse inertia tensor and the initial
angular momentum to compute the
initial angular velocity (Eq. 18). So,
part of the reason we store the angu-
lar momentum as a primary quantity is
because we can compute the angular

LISTING 1. The 3D Dynamics Algorithm.

velocity from it conveniently. The
angular momentum is also conve-
niently integrated from the torque,
while the integration from the angu-
lar acceleration to the angular veloci-
ty is more complicated. (Try differen-
tiating Eq. 17 to find the angular
acceleration equation. Keep in mind
the world-space inertia tensor’s deriv-
ative is nonzero.) Finally, the angular
momentum vector comes in handy
when you want to compute the kinet-
ic energy of the body, which is useful
for debugging.

Once we’re initialized, we can
begin the simulation. The first step is
to calculate what the external forces
on our body are (from explosions,
punches, rockets, or whatever), and
where on the body those forces are
applied. Once we have this informa-
tion, we can calculate the total force
and torque using Eqgs. 14 and 16.
Now we’re ready to integrate over
the timestep h. When looking at
these equations, it's important to
note the right-hand sides of all the
integration steps use the quantities
from step n, and the left-hand sides
all specify the next step, n + 1. The
new center of mass position is inte-
grated from the current position and
velocity. The new velocity is inte-
grated from the current velocity and
acceleration (using the definition of
linear acceleration as force over
mass, a la Eq. 14). Next, we integrate
the orientation. The orientation’s
derivative is calculated using the cur-
rent angular velocity as we saw in
Eq. 10. In the last integration step,
we integrate the new angular
momentum vector from the torque.
Finally, we need to enforce the
orthogonality constraints on our ori-
entation. If our integration was
exact, we wouldn’t have to do this
reorthogonalization, but errors will
creep into the orientation over time.
There are many ways to reorthogo-
nalize a rotation matrix, but they all
amount to making sure the rows and

FIGURE 4. The 3D collison impulse magnitude.

~(1+e)v;® On

L o1 1

n DnHNTA +|VTBE+[(I;1(rAP x n)) X +(I;(rBP x n)) x er] On

http://www.gdmag.com

columns are perpendicular and unit
length. See the sample code for one
technique.

Now that we’ve got the primary
quantities for step n + 1, we can calcu-
late the auxiliary quantities from them.
This gives us the up-to-date quantities
needed for the next integration step.
And away we go.

3D Collision Response

e’re almost out of space, so |

don’t have room to derive the
3D collision response equation.
However, the 3D derivation is very
similar to the 2D derivation in the
previous physics column, so you
should be able to work it out yourself
using the formulas in this article,
especially Eg. 12. So that you can
check your work, the final 3D equa-
tion for the impulse magnitude j is in
Figure 4. Just remember, there’s no
such thing as % when 1 is a matrix, so
you have to use I'* and keep track of
the order of multiplications.

Postlude

hat’s it. With the information in

this series, you should be able to
add much more believable physics to
your games and give the user a more
immersive experience. However, you’re
far from done. Here are just some of
the features we haven’t covered:

« Contact. Our objects currently
can’t rest on the ground, which is
pretty vital for a real game engine.

e Multiple simultaneous collision
points. If you drop a box flat onto
the ground, all four corners should
hit at the same time.

e Modeling friction during contact
and collision.

« Collision detection.

= Joints for articulated figures.

« Control for physically based crea-
tures. Animation loops and simu-
lation don’t necessarily get along
very well, so how to control crea-
tures in a physically simulated
environment is a huge issue.

* Numerical analysis. We covered

the bare minimum needed to get
our integrator running, but our
Euler integrator probably won’t do
for a production-quality simulator.
Numerical analysis is the study of
how to implement all of these
equations on the computer.

As you can see, there is a ton of
physics out there to learn. We're in the
dark ages of physical simulation in
games at this point, and the material in
these articles is just enough to get you
started learning. So go read the refer-
ences on my web site (http://ourworld.
compuserve.com/homepages/checker),
and get to work! =

Chris Hecker’s company, definition six
incorporated, is putting its money where
his mouth is by basing its first game on
some pretty stoked physics. If the e-mail
he’s received during this physics series is
any indication, lots of other companies are
trying to do the same thing, so the next
generation of games should finally start
pushing the physics envelope in some
interesting ways. Let him know how you’re
using physics at checker@bix.com.

E]

Please use checker@d6.com.

